Population biology of Microlaena stipoides in a south-eastern Australian pasture

2014 ◽  
Vol 65 (8) ◽  
pp. 767 ◽  
Author(s):  
M. L. Mitchell ◽  
J. M. Virgona ◽  
J. L. Jacobs ◽  
D. R. Kemp

Microlaena (Microlaena stipoides var. stipoides (Labill.) R.Br.) is a C3 perennial grass that is native to areas of south-eastern Australia. In this region, perennial grasses are important for the grazing industries because of their extended growing season and persistence over several years. This series of experiments focused on the population biology of Microlaena by studying the phenology (when seed was set), seed rain (how much seed was produced and where it fell), seed germination, germinable seedbank, seed predation and seedling recruitment in a pasture. Experiments were conducted at Chiltern, in north-eastern Victoria, on an existing native grass pasture dominated by Microlaena. Seed yields were substantial (mean 800 seeds m–2), with seed rain occurring over December–May. Microlaena has two distinct periods of high seed rain, in early summer and in early autumn. Seed predation is high. Within a 24-h period during peak seed production, up to 30% of Microlaena seed was removed from a pasture, primarily by ants. Microlaena seedlings recruited throughout an open paddock; however, seedling density was low (5 seedlings m–2). Microlaena represented only low numbers in the seedbank (0.01–0.05% of total); hence, any seedlings of Microlaena that germinate from the seedbank would face immense competition from other species. Management strategies for Microlaena-dominant pastures need to focus on the maintenance of existing plants.

2005 ◽  
Vol 56 (11) ◽  
pp. 1261 ◽  
Author(s):  
T. P. Bolger ◽  
A. R. Rivelli ◽  
D. L. Garden

Perennial grasses are the key to the economic and environmental sustainability of pastures for livestock grazing in south-eastern Australia. Mortality of perennial grasses can occur during drought periods and there is anecdotal evidence of differences in drought resistance among species, but information on the basic ecophysiological responses of these species to drought is lacking. An experiment was conducted to determine the responses of 7 native and 3 introduced perennial grass species to continuous drought. Leaf survival during severe drought varied among the species nearly 4-fold, from 11 to 40 days, and was considered a measure of their overall drought resistance. All of the species had good dehydration tolerance, so the differences in drought resistance were related more to their dehydration avoidance traits, specifically to the amount of water available to the plant at the point where plant transpiration became minimal. The native species had both the longest and shortest leaf survival periods, with the introduced species ranking intermediate. Species exhibited various morphological traits that contributed to dehydration avoidance during severe drought, including leaf folding or rolling, rapid leaf shedding, and large amounts of cuticular wax. The results are discussed in terms of their implications for perennial grass persistence in south-eastern and in south-western Australia.


2008 ◽  
Vol 59 (3) ◽  
pp. 237 ◽  
Author(s):  
W. B. Badgery ◽  
D. R. Kemp ◽  
D. L. Michalk ◽  
W. McG. King

Native perennial grass competition can substantially reduce the invasion of Nassella trichotoma (serrated tussock), a major perennial grass weed problem in south-eastern Australia. This paper reports on a field experiment that investigated the recruitment of N. trichotoma seedlings, and determined what level of native grass competition was needed to prevent establishment in the central-west of NSW. Grasslands that maintained >2 t dry matter (DM)/ha and 100% ground cover (measured in spring) prevented N. trichotoma seedling recruitment. Relatively small amounts of perennial grass (>0.5 t DM/ha measured in spring) resulted in mortality of N. trichotoma seedlings that had recruited earlier in the year, through the next summer. Flupropanate also markedly reduced native perennial grasses and substantially increased N. trichotoma seedling establishment 12 months after application. Rotational grazing to maintain adequate levels of DM was an important management tactic that prevented N. trichotoma establishment and survival.


2002 ◽  
Vol 50 (5) ◽  
pp. 545 ◽  
Author(s):  
Andrew J. Denham ◽  
Tony D. Auld

A few resprouting plants in fire-prone environments have no local seed bank (soil or canopy) when a fire occurs. These species rely on post-fire flowering and the production of non-dormant seeds to exploit favourable post-fire establishment and growth conditions. For two such pyrogenic flowering species (Doryanthes excelsa Correa and Telopea speciosissima (Smith) R.Br.), we examined the timing of seed release, patterns of fruit production, seed dispersal, seed predation and seedling establishment following a fire in the Sydney region of south-eastern Australia. Both species took some 19 months after the fire to flower and the first seeds were released 2 years after the fire. D. excelsa flowered and fruited only once after the fire. For T. speciosissima, plants also flowered at least once more in the subsequent 5 years, but produced seed in only the first three post-fire flowering years. Fruit production differed between species, with fruiting individuals of D. excelsa producing fewer infructescences, similar numbers of follicles, but many more seeds per follicle than fruiting individuals of T. speciosissima. Ultimately, D. excelsa produced approximately six times as many seeds per m2 and four times as many seeds per adult in one flowering season than T. speciosissima did after four flowering (three successful fruiting) seasons. Seeds were passively dispersed from fruits borne 3–4 m (D. excelsa) or 1–2 m (T. speciosissima) above the ground. Most seeds were found within 5 m (D. excelsa) or 3 m (T. speciosissima) of parent plants. The primary seed shadow of both species was a poor predictor of the distribution of seedlings, with more seedlings occurring further from the adults than expected from the distribution of seeds. Seed loss to predators was high in both species in exclusion experiments where mammals had access to clumps of seeds (77–88%). It was variable and generally lower (8–65%) in experiments where seeds were not locally clumped. However, for T. speciosissima, at one site, some 65% of seeds were lost to mammals and invertebrates in these latter experiments. At this site, these losses appeared to influence subsequent recruitment levels, as very low seedling densities were observed. For both species, germination of seedlings first occurred some 2.5–3 years after the passage of the fire. The percentage of seeds produced to seedlings successfully established was low in D. excelsa (2–3%) and more variable across sites and years in T. speciosissima (0–18%). Resultant post-fire seedling densities of D. excelsa (two sites) and T. speciosissima at one site were similar, but they were much lower at the T. speciosissima site that had high levels of seed predation. Both D. excelsa and T. speciosissima are amongst the slowest woody resprouting species to recruit seedlings after fire in south-eastern Australia and lag years behind species with soil or canopy seed banks.


2001 ◽  
Vol 52 (3) ◽  
pp. 351 ◽  
Author(s):  
Meredith L. Mitchell ◽  
T. B. Koen ◽  
W. H. Johnston ◽  
D. B. Waterhouse

This paper reports the results of an initial evaluation of a large collection of Australian perennial native grasses. The overall aim of the research was to identify accessions that may be useful for pastoral purposes and for controlling land degradation on hill-lands in the high (>500 mm) rainfall zone of south-eastern Australia. Accessions (807) representing 37 target species were established in spaced plant nurseries at Rutherglen and Wagga Wagga. Dactylis glomerata L. cv. Porto and Eragrostis curvula (Schrad) Nees. Complex cv. Consol were established as comparator (control) species. A range of attributes was observed over a 2-year period (19900—1992), including persistence, vigour, productivity, palatability, morphology, and characteristics related to seed production. Accessions were initially culled on the basis of their persistence. Data for a range of attributes were separately analysed using pattern analysis to provide a broad overview of the performance and characteristics of the remaining accessions. A number of selection criteria were applied which resulted in selection of a promising group of 20 accessions (12 species from 8 genera). The promising group of accessions will be evaluated further at field sites typical of hilly landscapes in the 500mp;mdash;600 mm rainfall zone of south-eastern Australia.


2006 ◽  
Vol 46 (4) ◽  
pp. 439 ◽  
Author(s):  
W. McG. King ◽  
P. M. Dowling ◽  
D. L. Michalk ◽  
D. R. Kemp ◽  
G. D. Millar ◽  
...  

Temperate perennial grass-based pastures dominate the high rainfall zone of south-eastern Australia and support a major livestock production industry. This area has experienced a recent change in overall pasture condition, however, typified by a reduction in the abundance of perennial grasses and an increasingly prominent winter-annual grass weed component. Improving the condition and productivity of these pastures can be achieved by improved management but this requires better knowledge of the interactions between management options and pasture species composition and of the interaction between pasture vegetation and the complex effects of a heterogeneous landscape. This paper reports the results of an intensive survey of a 60-ha paddock that was designed to identify the species present, determine their patterns of distribution and examine the relationships between pasture vegetation and the environment. The survey of species present in late summer was supplemented by the identification of seedlings that later emerged from extracted soil cores and by soil physical and chemical analyses. Data were analysed using ordination and interpreted with GIS software so that topographic features could be considered. The most frequently identified taxa were Hypochaeris radicata, Austrodanthonia spp. and Bothriochloa spp. (in late summer) and Vulpia spp., Bromus molliformis and Trifolium subterraneum (winter-annual species). Austrodanthonia spp. were commonly found on the drier ridges and more acid soils with lower phosphate levels. These were also the areas dominated in spring by Vulpia spp. and were generally lower in plant species richness overall. The most species-rich areas occurred downslope where soil fertility was higher and less moisture stress was presumably experienced. The measured environmental factors explained a substantial proportion of the variation in the vegetation dataset, which underlined the importance of considering landscape effects in the management of typical tablelands pastures.


2007 ◽  
Vol 58 (12) ◽  
pp. 1167 ◽  
Author(s):  
R. J. Eckard ◽  
D. F. Chapman ◽  
R. E. White

Nitrogen (N) fertiliser use on dairy pastures in south-eastern Australia has increased exponentially over the past 15 years. Concurrently, imports of supplementary feed onto dairy farms have increased, adding further nutrients to the system. These trends raise questions about the environmental effects of higher nutrient inputs to dairy farms. To gauge possible effects, annual N balances were calculated from an experiment where N inputs and losses were measured for 3 years from non-irrigated grass/clover pastures receiving either no N fertiliser (Control) or 200 kg N/ha applied annually as ammonium nitrate or urea. Estimated total N inputs, averaged over the 3 years, were 154, 314, and 321 kg N/ha.year for the control, ammonium nitrate, and urea treatments, respectively, while N outputs in meat and milk were 75, 99, and 103 kg N/ha.year, respectively. The corresponding calculated N surplus was 79, 215, and 218 kg N/ha.year for the 3 treatments, respectively, and the ratio of product N/total-N inputs for the 3 treatments ranged from 50% in the control to 32% for both N treatments. Total N losses averaged 56, 102, and 119 kg N/ha.year, leaving a positive N balance of 23, 112, and 99 kg N/ha.year for the control, ammonium nitrate, and urea treatments, respectively. The ratio of product N/total-N inputs or the N surplus may be useful in monitoring the efficiency of conversion of N into animal products and the potential environmental effect at a whole-farm scale. However, additional decision support or modelling tools are required to provide information on specific N losses for a given set of conditions and management inputs. Given the large range in N losses there is opportunity for improving N-use efficiency in dairy pastures through a range of management practices and more tactical use of grain and N fertiliser.


1975 ◽  
Vol 2 (2) ◽  
pp. 135 ◽  
Author(s):  
K Myers

Rabbits in subalpine areas in south-eastern Australia show a marked avidity for sodium salts during the spring and early summer months. During that period rabbit populations may be controlled by allowing access to soft wooden meranti pegs impregnated with sodium chloride and sodium luoroacetate (poison 1080). If the pegs are left out as permanent bait stations they produce long-term effective control. The method should be applicable to other areas in Australia where soil sodium is very low.


2001 ◽  
Vol 52 (3) ◽  
pp. 343 ◽  
Author(s):  
W. H. Johnston ◽  
Meredith L. Mitchell ◽  
T. B. Koen ◽  
W. E. Mulham ◽  
D. B. Waterhouse

This paper reports on the collection phase of a research program which aimed to identify Australian native grasses that may be useful for pastoral purposes and for controlling land degradation on hill-lands in the high (>500 mm) rainfall zone of south-eastern Australia. Live plants of 37 target species were collected along a number of transects, and at specific locations, in New South Wales and Victoria. The collection sites were generally along public roads, and were chosen for their vegetation diversity. Each collection site was marked on a 1: 250000 topographic map, and detailed notes were taken of the native vegetation, geology, soil types, land use, and other features. Surface (00—10 cm) soil samples were collected at most sites and analysed for phosphorus, pH CaCl 2 , electrical conductivity, and particle size distribution. A total of 807 accessions were collected from 210 locations. At most collection sites, soils were acidic (median pH 5.6); soil phosphorus (Olsen) was in the low range (<8.5 mg/kg); and the target genera occurred with a low frequency (half of the sites yielded 3 accessions or less). Although genera collected in the study could be ranked on the basis of the mean pH of their collection sites, they all tolerated a considerable soil pH range (of about 2mp;mdash;5 pH units). Allowing root and shoot growth to recommence by growing collected plants for a short period in coarse sand considerably improved establishment success. Accessions collected in this study will be further evaluated.


1996 ◽  
Vol 18 (1) ◽  
pp. 3 ◽  
Author(s):  
VJ Anderson ◽  
KC Hodgkinson ◽  
AC Grice

This study examined the effects of previous grazing pressure, position in the landscape and apparent seed trapping capability of soil surface micro-sites on recruitment of the perennial grass Monachather paradoxa (mulga oats) in a semi-arid woodland. Seedling emergence was counted on small plots which had been kept moist for one month. The plots were on bare ground, or at grass tussocks, or at log mounds, sited in the run-off, interception and run-on zones of paddocks that had been grazed for six years at 0.3 and 0.8 sheep equivalent/ha. Few naturally occurring perennial grass seedlings emerged on any of the sites. The level of previous grazing pressure influenced the recruitment of grasses from natural sources as well as from seed of M. paradoxa broadcast on the soil surface; significantly more grass seedlings recruited in paddocks stocked at 0.3 than at 0.8 sheep/ha. Emergence of the sown grass did not differ significantly between the three zones in the landscape, but trends in the data suggest the interception zone may have been the most favourable. Recruitment from in situ grass seed was highest in the mulga grove (run-on) zone. Most seedlings of the sown grass emerged around the bases of existing perennial grass tussocks, but recruitment of volunteer perennial and annual grasses was more evenly distributed between the mulga log-mounds and perennial grass tussocks. It is concluded that very low levels of readily germinable seed of perennial grasses remained in the soil at the end of the drought and that areas with a history of high grazing pressure have less probability of grass recruitment when suitable rain occurs.


2012 ◽  
Vol 63 (4) ◽  
pp. 389 ◽  
Author(s):  
R. Thapa ◽  
D. R. Kemp ◽  
M. L. Mitchell

Recruitment of new perennial grass plants within existing grassland ecosystems is determined by seed availability, suitable microsites, nutrients and climatic conditions, water and temperatures. This paper reports on the development of criteria to predict recruitment events using modelled soil moisture conditions associated with recruitment of species in five field experiments at Orange (Phalaris aquatica), Trunkey Creek (Austrodanthonia spp.), and Wellington (Bothriochloa macra) in central New South Wales, Australia, and the frequency of those conditions during the past 30 years. Recruitment events were recorded when a rainfall event (median 68 mm across the three sites) kept the surface volumetric soil moisture (0–50 mm) above the permanent wilting point for at least 15 continuous days, allowing for, at most, two ‘dry days’ in between. A key finding from our study is that rainfall events creating favourable soil moisture conditions for seedling emergence typically occurred in the second half of February, sometimes extending to early March. Previously it was thought that recruitment would more likely occur through autumn, winter, and spring when rainfall in southern Australia is more reliable. The 30 years’ data (1975–2004) showed that the P. aquatica site had a median of 20 continuous moist days each year in February–March, whereas, there were 16 and 10 days for the Austrodanthonia and B. macra sites, respectively. The probabilities of exceeding seven or 15 continuous days of moist surface soil were 98% and 78% at the P. aquatica site, 91% and 49% at the Austrodanthonia site, and 73% and 30% at the B. macra site, and indicated that some recruitment is possible in most years. These analyses were extended to several sites across New South Wales, Victoria, and Tasmania to estimate the frequency with which recruitment could occur within natural swards. Across these sites, the probabilities of exceeding seven continuous days of soil moisture were >55% and of exceeding 15 continuous days were lower, which showed that suitable climatic conditions exist during late summer–early autumn across south-eastern Australia for a recruitment event to occur. Future research may show that the criteria developed in this paper could have wider regional application.


Sign in / Sign up

Export Citation Format

Share Document