Grain number determination under contrasting radiation and nitrogen conditions in 2-row and 6-row barleys

2015 ◽  
Vol 66 (5) ◽  
pp. 456 ◽  
Author(s):  
Sebastián Arisnabarreta ◽  
Daniel J. Miralles

Crop growth and developmental rate around the pre-heading phase are important for determining grain yield potential in barley (Hordeum vulgare L.) and other crop cereals. The photothermal quotient, Q (ratio between photosynthetically active radiation (PAR) and temperature) around the flowering period has been found to be a good predictor of grain number per unit area under potential growing conditions when both solar radiation and temperature vary, but not under suboptimal nitrogen (N) conditions. Under suboptimal conditions, Q might not account for differences in grain number due to modifications in radiation-use efficiency (RUE), biomass partitioning between vegetative and reproductive organs, fruiting efficiency, and/or a combination of these factors. This paper aims at providing insights into how grain yield is defined during the pre-heading phase in 2- and 6-row barleys under contrasting N and radiation environments, using a model proposed by RA Fischer for grain number determination. Nitrogen and radiation treatments affected grain number, and consequently grain yield, through changes in spike biomass at heading, and not by a direct N effect. When low and high N conditions were included, Q poorly explained variations in grain number. Nitrogen increased RUE during the pre-heading phase. When accumulated PAR intercepted between the maximum number of spikelet primordia and heading stages (PARia) was considered together with RUE, the accuracy of the model was increased. Nitrogen slightly increased biomass partitioning between reproductive and vegetative organs, but it was not strong enough to improve the model between PARia and grain number. In the case of fruiting efficiency, genotype × N and shading × N interactions highlighted that this trait was maximised when 6-rowed barleys and shading were imposed under the high N treatment.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2691
Author(s):  
Mekides Woldegiorgis Gardi ◽  
Waqas Ahmed Malik ◽  
Bettina I. G. Haussmann

Barley (Hordeum vulgare L.) is an important food security crop due to its high-stress tolerance. This study explored the effects of CO2 enrichment (eCO2) on the growth, yield, and water-use efficiency of Ethiopian barley cultivars (15 landraces, 15 released). Cultivars were grown under two levels of CO2 concentration (400 and 550 ppm) in climate chambers, and each level was replicated three times. A significant positive effect of eCO2 enrichment was observed on plant height by 9.5 and 6.7%, vegetative biomass by 7.6 and 9.4%, and grain yield by 34.1 and 40.6% in landraces and released cultivars, respectively. The observed increment of grain yield mainly resulted from the significant positive effect of eCO2 on grain number per plant. The water-use efficiency of vegetative biomass and grain yield significantly increased by 7.9 and 33.3% in landraces, with 9.5 and 42.9% improvement in released cultivars, respectively. Pearson’s correlation analysis revealed positive relationships between grain yield and grain number (r = 0.95), harvest index (r = 0.86), and ear biomass (r = 0.85). The response of barley to eCO2 was cultivar dependent, i.e., the highest grain yield response to eCO2 was observed for Lan_15 (122.3%) and Rel_10 (140.2%). However, Lan_13, Land_14, and Rel_3 showed reduced grain yield by 16, 25, and 42%, respectively, in response to eCO2 enrichment. While the released cultivars benefited more from higher levels of CO2 in relative terms, some landraces displayed better actual values. Under future climate conditions, i.e., future CO2 concentrations, grain yield production could benefit from the promotion of landrace and released cultivars with higher grain numbers and higher levels of water-use efficiency of the grain. The superior cultivars that were identified in the present study represent valuable genetic resources for future barley breeding.


2021 ◽  
Author(s):  
Mekides Woldegiorgis Gardi ◽  
Bettina I.G Haussmann ◽  
Waqas Ahmed Malik ◽  
Petra Högy

Abstract AimsThe general aim of this meta-analysis is to synthesize and summarise the mean response of barley yield variables to elevated CO2 (eCO2) and its interaction with temperature and N fertilization. Methods The present study quantitatively synthesized the response of barley to eCO2 and its interaction with temperature, and Nitrogen (N). A meta-analysis procedure was used to analyse five yield variables of barley extracted from 76 articles to determine the effect size and the magnitude in relation to eCO2 and its interaction with temperature and N. Results CO2 enrichment increased biomass (23.8%), grain number (24.8%), grain yield (27.4%), and thousand-grain weight (5.6%). However, responses to eCO2 were affected by genotype, additional stress, and experimental conditions. In comparison, genotype “Anakin” shows the highest response of biomass (47.1%), while “Genebank accessions” had a higher grain number (46.1%) and grain yield (57.1%) under eCO2. The maximal enhancement of barley yield was observed when plants grow under a combination of eCO2 and higher nitrogen fertilizer (>100 kg ha-1). Nevertheless, biomass (-12%), and grain yield (-17%) responses were lower when eCO2 is combined with high temperature (>25 °C). It was further noted the response of barley yield to eCO2 was higher in the growth chamber than in other CO2 exposure methods. Moreover, comparing pot-rooted versus field-rooted barley plants, a higher response of biomass and grain yield was observed for pot-rooted plants. ConclusionsOverall, results suggest that the maximal barley production under eCO2 will be obtained in combination with high nitrogen fertilizer and optimal temperature (21-25 °C).


1987 ◽  
Vol 38 (1) ◽  
pp. 49 ◽  
Author(s):  
FR Bidinger ◽  
V Mahalakshmi ◽  
GDP Rao

The finding that the more than 50% of the variation in grain yield of pearl millet breeding lines in two different drought stress treatments could be attributed to variation in yield potential and time of flowering was used to develop a drought-response index (DRI) based on the residual variation in grain yield, adjusted for experimental error. DRI was positively correlated to measured yield in the drought treatments, and independent of both yield potential and time to flowering. DRI in both midseason and terminal stress treatments was unrelated to yield component structure in the irrigated control treatment, indicating that selection for plant type under non-stressed conditions will not influence drought response. DRI was correlated to both grain number per panicle, and grain yield per panicle in both stress treatments, suggesting differential ability to maintain normal grain number, and/or that grain yield per panicle was an important factor in response to stress. Maintenance of panicle number did not seem to be important for maintenance of yield under drought stress. The correlation of DRI and individual panicle yield was of sufficient magnitude for the latter to serve as a selection index in terminal stress. The use of a DRI as a component of breeding for better adaptation to stress is discussed.


2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


2013 ◽  
Vol 145 ◽  
pp. 106-115 ◽  
Author(s):  
Daniela V. Bustos ◽  
Ahmed K. Hasan ◽  
Matthew P. Reynolds ◽  
Daniel F. Calderini

Author(s):  
Özgür Tatar ◽  
Uğur Çakaloğullari ◽  
Gülden Deniz Ateş Atasoy ◽  
Deniz Iştipliler

AbstractWheat, being the main crop in Mediterranean type environments, is grown during winter under rainfed conditions and its yield potential is mostly affected by the amount and distribution of rain. This study is conducted at experimental fields of Ege University, Department of Field Crops in Izmir-Bornova which is characterized as Mediterranean type climate conditions during 2011/2012 and 2012/2013 growing season. Totally 9 canopy structures were generated by different row and line distances. Plant height, total dry weight, tiller number, harvest index, spike number, grain number per spike, thousand grain weight and grain yield were determined after harvest time while digital leaf area index and soil moisture contents were monitoring during specific growth periods to evaluate changes in soil water status by different canopy closer. Increasing in sowing density by different row and in-line distance reduced tiller and spike number per plant. On the other hand, grain number per spike and thousand grain weights were significantly affected by in-line distance instead of row distance. Higher grain yield were obtained from 20x1 cm treatments. Canopy cover speed determined using with digital imaging was not remarkable correlated (r=0.06) with soil moisture content during post-anthesis stage of wheat when higher rain amount is recorded in 2012. However, there was a significant negative correlation (r=0.51) between canopy cover speed and soil water status during post-anthesis stage when the rain amount is limited in 2013. We may suggest that rapid canopy cover lead to negative effect on soil water status via higher transpiration if the rain is limited during post-anthesis stage of wheat.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1999
Author(s):  
József Csajbók ◽  
Péter Pepó ◽  
Erika Kutasy

We tested six winter barley (Hordeum vulgare L.) cultivars in a small plot field experiment, measuring photosynthesis and other parameters three times during the growing season. Four genotypes—Andoria, Jakubus, Paradies and Zophia—are new, promising varieties with requirements of intensive technology, high yield potential and very good disease resistance. The two popular Hungarian varieties (KG Apavár and KG Puszta) are relatively old but they have good tolerance to extreme ecological conditions and outstanding resistance and winter hardiness. The aim of our research was to test the new varieties’ performance. Several recent studies found close connections among various photosynthetic parameters in barley, and we confirmed that in our research. There were significant differences between the varieties in the assimilation rate—the highest values were measured at the BBCH 47–49 stage (end of booting), except Jakubus and Zophia, where the highest values were at BBCH 73–75 (milk ripe). The cultivars’ response to irradiation change varied, especially at higher photosynthetic photon flux density (PPFD) levels. In April and May, the plants were in drought stress according to the intercellular CO2 level and the total conductance to carbon dioxide. The differences between the air and leaf temperature were also low, indicating water stress, but the assimilation rate was relatively high (9.07–14.09 µmol m−2 s−1).We found a close connection between normalized difference vegetation index (NDVI) values and grain protein content in each of the tested barley cultivars. The correlation was significant, at p = 0.01 level. The protein yield per hectare was determined rather by grain yield than protein content. The relationship between the NDVI values and grain yield was moderate, but NDVI values and protein content are in strong correlation.


1999 ◽  
Vol 50 (7) ◽  
pp. 1263 ◽  
Author(s):  
J. Voltas ◽  
I. Romagosa ◽  
A. Lafarga ◽  
A. P. Armesto ◽  
A. Sombrero ◽  
...  

Carbon isotope discrimination (Δ) has been found to be either positively or negatively related to grain yield of small grain cereals when grown in contrasting environments. In order to clarify a possible association between grain yield of barley (Hordeum vulgare L.) and Δ of mature kernels, five 6-rowed and five 2-rowed barley cultivars were evaluated in 22 rainfed environments of northern Mediterranean Spain. Analyses of variance suggested that the genotypic Δ values were more consistent across environments than the genotypic yields. Genotype×environment (G×E) interaction for grain yield was further explored by fitting an AMMI (additive main effects and multiplicative interaction) model. The first 2 multiplicative axes were found significant. The AMMI2 model provided more accurate estimates of genotypic yields within environments than the conventional unadjusted means across replicates. AMMI2 estimates were used for input into cluster analysis, grouping environments that ranked genotypic yields similarly. Three major groups were obtained, with average yields of 2.42 t/ha (cluster I), 3.06 t/ha (cluster II), and 5.16 t/ha (cluster III). The genotypic ranking for Δ did not vary substantially across clusters, but it changed for grain yield. The average genotypic yields in the low-yielding cluster I ranked opposite to those in the high-yielding cluster III, suggesting the existence of a crossover point at an intermediate yield level. The association between grain yield and Δ for genotypic means within clusters was variable. In cluster I, yield and Δ tended to be negatively related, whereas they were positively related in clusters II and III. Genotypes with lower Δ, i.e. with higher transpiration efficiency, performed better in low-yielding environments (mostly those grouped in cluster I). On the contrary, a high genotypic Δ was of advantage in medium (cluster II) and high-yielding environments (cluster III). This observation supports the assumption that drought tolerance and high yield potential under non-limiting growing conditions may be antagonistic concepts in barley. Genotypic means for kernel number per m 2 and Δ were consistently and positively related within clusters, suggesting that a constitutively high Δ may have been driven by a large genotypic reproductive sink. The convenience of using Δ as a selection criterion in areas exhibiting a considerable G×E interaction for grain yield is discussed.


2015 ◽  
Vol 66 (5) ◽  
pp. 419 ◽  
Author(s):  
Tina Botwright Acuña ◽  
Shaun Lisson ◽  
Peter Johnson ◽  
Geoff Dean

Yield, water use and water-use efficiency (WUE) in the high-rainfall zone of Tasmania are highly variable because of environmental and agronomic constraints to grain production that limit yield potential. The expansion of irrigation infrastructure in Tasmanian production systems with access to low-cost, plentiful irrigation sources will also influence these components in some areas. This paper reports on desktop modelling studies that aimed to benchmark wheat WUE and to explore the sensitivity of yield, water use and WUE to changes in management practice in a high-rainfall environment. Here, WUE was defined as: grain yield/(evapotranspiration + drainage + runoff). The crop simulation model APSIM-Wheat was used to quantify key water balance elements and estimate ‘attainable’ and ‘potential’ WUE and grain yield for 27 wheat trials. The upper limit for WUE was ~30 kg/ha.mm in excess of 180 mm evaporation, which is 16% higher than previous estimates at this southerly latitude for wheat. Attainable WUE ranged from 58% to 100% of potential WUE and was limited by nitrogen supply and water loss through evaporation, drainage and runoff. Model scenarios showed that co-limitation of inputs of nitrogen and irrigation was an important driver of grain yield and WUE. The implications of this research on crop management and production in temperate, high-rainfall environments are discussed.


Sign in / Sign up

Export Citation Format

Share Document