scholarly journals Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains

2017 ◽  
Vol 68 (8) ◽  
pp. 713 ◽  
Author(s):  
Francesca Verrillo ◽  
Franz-Werner Badeck ◽  
Valeria Terzi ◽  
Fulvia Rizza ◽  
Letizia Bernardo ◽  
...  

The aim of this study was to investigate the impact of elevated concentration of carbon dioxide (CO2), as expected over coming decades, on yield and quality of winter bread wheat (Triticum aestivum L.). Plants (cv. Bologna) were grown by using the free-air CO2 enrichment (FACE) system at Fiorenzuola d’Arda under ambient (control) and elevated (570 ppm, e[CO2]) CO2 concentrations for two growing seasons. We addressed whether there would be a response of wheat grains to elevated CO2 concentration in terms of the contents of nitrogen (N), micro- and macronutrients, proteins and free amino acids. Under e[CO2], total wheat biomass and grain yield increased in both years of the study. Grain N percentage was reduced under e[CO2], but grain N yield (kg ha–1) was increased. Among macro- and micronutrients, a decrease in zinc concentration was observed. The proteome pattern was significantly different in grains grown at the two different CO2 levels, but the observed changes were highly dependent on interactions with prevailing environmental conditions. Finally, a negative trend was observed in the early germination rates of seeds from plants grown under e[CO2] compared with the controls. The results suggest that the expected increase in CO2 levels and their interactive effects with environmental variables may influence agronomic performance by increasing yield and negatively affecting quality.

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 487 ◽  
Author(s):  
Takashi Chiba ◽  
Yumi Haga ◽  
Makoto Inoue ◽  
Osamu Kiguchi ◽  
Takeshi Nagayoshi ◽  
...  

We have developed a simple measuring system prototype that uses an unmanned aerial vehicle (UAV) and a non-dispersive infrared (NDIR) analyzer to detect regional carbon dioxide (CO2) concentrations and obtain vertical CO2 distributions. Here, we report CO2 measurement results for the lower troposphere above Ogata Village, Akita Prefecture, Japan (about 40° N, 140° E, approximately −1 m amsl), obtained with this UAV system. The actual flight observations were conducted at 500, 400, 300, 200, 100, and 10 m above the ground, at least once a month during the daytime from February 2018 to February 2019. The raw CO2 values from the NDIR were calibrated by two different CO2 standard gases and high-purity nitrogen (N2) gas (as a CO2 zero gas; 0 ppm). During the observation period, the maximum CO2 concentration was measured in February 2019 and the minimum in August 2018. In all seasons, CO2 concentrations became higher as the flight altitude was increased. The monthly pattern of observed CO2 changes is similar to that generally observed in the Northern Hemisphere as well as to surface CO2 changes simulated by an atmospheric transport model of the Japan Meteorological Agency. It is highly probable that these changes reflect the vegetation distribution around the study area.


2018 ◽  
Vol 14 (2) ◽  
pp. 239-253 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Swingedouw ◽  
Didier M. Roche ◽  
Maria F. Sanchez-Goni ◽  
Xavier Crosta

Abstract. Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ∼ 430 ka BP) were around 40 ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials.


2020 ◽  
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Ellen E. Martin ◽  
Shaily Rahman

Abstract. Accelerated melting of the Greenland Ice Sheet (GrIS) has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of GrIS meltwater on Arctic greenhouse gas (GHG) budgets. We measured carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks in water discharging from three subglacial outlets of the GrIS in southwest (Isunnguata and Russell Glaciers) and southern Greenland (Kiattut Sermiat). CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat, but are supersaturated at southwest sites, even though oxidation reduces concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites, however differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. The predominant source of CO2 at Isunnguata is organic matter (OM) remineralization, but Russell and Kiattut Sermiat sites have multiple or heterogeneous subglacial CO2 sources that maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat where CO2 is undersaturated. These results highlight the variability in GHG dynamics under the GrIS. Constraining this variability will improve our understanding of the impact of GrIS melt on Arctic GHG budgets, as well as the role of continental ice sheets in GHG variations over glacial-interglacial timescales.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2021 ◽  
Vol 15 (3) ◽  
pp. 1627-1644
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Ellen E. Martin ◽  
Åsa K. Rennermalm ◽  
Shaily Rahman

Abstract. Accelerated melting of the Greenland Ice Sheet has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of Greenland Ice Sheet meltwater on Arctic greenhouse gas budgets. We evaluate subglacial discharge from the Greenland Ice Sheet for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks. We compare discharge from southwest (a sub-catchment of the Isunnguata Glacier, sub-Isunnguata, and the Russell Glacier) and southern Greenland (Kiattut Sermiat). Meltwater CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat. In contrast, meltwaters from southwest sites are supersaturated, even though oxidation reduces CH4 concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at sub-Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites; however, differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. At the sub-Isunnguata site, the predominant source of CO2 is organic matter (OM) remineralization. However, multiple or heterogeneous subglacial CO2 sources maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat, where CO2 is undersaturated. These results highlight a previously unrecognized degree of heterogeneity in greenhouse gas dynamics under the Greenland Ice Sheet. Future work should constrain the extent and controls of heterogeneity to improve our understanding of the impact of Greenland Ice Sheet melt on Arctic greenhouse gas budgets, as well as the role of continental ice sheets in greenhouse gas variations over glacial–interglacial timescales.


2019 ◽  
Vol 37 ◽  
Author(s):  
L.P. SILVEIRA ◽  
A.R. FEIJÓ ◽  
C. BENETTI ◽  
J.P. REFATTI ◽  
M.V. FIPKE ◽  
...  

ABSTRACT: The long temporal persistence of select herbicides negatively impacts crops sown in succession to irrigated rice. One way to reduce these compounds in the soil over time is through phytoremediation. However, elevated CO2 concentrations may interfere with the phytoremediation process. Another consequence of climate change is the production of allelopathic compounds by forage species used as remedial agents. This study aimed to evaluate the impact of elevated CO2 concentration and drought stress on the remediation of soil samples contaminated with imazapyr + imazapic herbicides by Italian ryegrass and any subsequential affect on the allelopathic effect of this species. We report that the increasing CO2 decreased the phytoremediation potential of ryegrass. Water stress combined with a CO2 concentration of 700 µmol mol-1 caused increased allelopathy. Overall, these are the first data to indicate a significant effect of higher CO2 levels with respect to both phytoremediation efficacy and allelopathic potential of the plant species used in phytoremediation.


2009 ◽  
Vol 60 (8) ◽  
pp. 697 ◽  
Author(s):  
Mahabubur Mollah ◽  
Rob Norton ◽  
Jeff Huzzey

The AGFACE project commenced in June 2007 at Horsham (36°45′07″S, 142°06′52″E; 127 m elevation), Victoria, Australia. Its aim is to quantify the interactive effects of elevated atmospheric carbon dioxide concentration (e[CO2]), nitrogen, temperature (accomplished by early and late sowing times), and soil moisture on the growth, yield, and water use of wheat (Triticum aestivum L.) under Australian conditions. The main engineering goal of the project was to maintain an even temporal and spatial distribution of carbon dioxide (CO2) at 550 μmol/mol within AGFACE rings containing the experimental treatments. Monitoring showed that e[CO2] at the ring-centres was maintained at or above 90% of the target (495 μmol/mol) between 93 and 98% of the operating time across the 8 rings and within ±10% of the target (495–605 μmol/mol) between 86 and 94% of the time. The carbon dioxide concentration ([CO2]) measured inside the rings declined non-linearly with increasing distance downwind of the CO2 source and differed by 3–13% in concentration between the two canopy heights in each ring, but was not affected by wind speed or small variations in [CO2] at the ring-centres. The median values for model-predicted concentrations within the inner 11-m-diameter portion of the rings (>80% of the ring area) varied between 524 and 871 μmol/mol but remained close to target near the centres. The design criteria adopted from existing pure CO2 fumigating FACE systems and new ideas incorporated in the AGFACE system provided a performance similar to its equivalent systems. This provides confidence in the results that will be generated from experiments using the AGFACE system.


2016 ◽  
Vol 43 (9) ◽  
pp. 892 ◽  
Author(s):  
Simone Vassiliadis ◽  
Kim M. Plummer ◽  
Kevin S. Powell ◽  
Piotr Trębicki ◽  
Jo E. Luck ◽  
...  

Atmospheric CO2 concentrations are predicted to double by the end of this century. Although the effects of CO2 fertilisation in crop systems have been well studied, little is known about the specific interactions among plants, pests and pathogens under a changing climate. This growth chamber study focuses on the interactions among Barley yellow dwarf virus (BYDV), its aphid vector (Rhopalosiphum padi) and wheat (Triticum aestivum L. cv. Yitpi) under ambient (aCO2; 400µmolmol–1) or elevated (eCO2; 650µmolmol–1) CO2 concentrations. eCO2 increased the tiller number and biomass of uninoculated plants and advanced the yellowing symptoms of infected plants. Total foliar C content (percentage of the total DW) increased with eCO2 and with sham inoculation (exposed to early herbivory), whereas total N content decreased with eCO2. Liquid chromatography–mass spectrometry approaches were used to quantify the products of primary plant metabolism. eCO2 significantly increased sugars (fructose, mannitol and trehalose), irrespective of disease status, whereas virus infection significantly increased the amino acids essential to aphid diet (histidine, lysine, phenylalanine and tryptophan) irrespective of CO2 concentration. Citric acid was reduced by both eCO2 and virus infection. Both the potential positive and negative biochemical impacts on wheat, aphid and BYDV interactions are discussed.


2005 ◽  
Vol 35 (3) ◽  
pp. 730-740 ◽  
Author(s):  
Nereu Augusto Streck

The amount of carbon dioxide (CO2) of the Earth´s atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.


Sign in / Sign up

Export Citation Format

Share Document