Shifts in nitrogen and phosphorus uptake and allocation in response to selection for yield in Chinese winter wheat

2017 ◽  
Vol 68 (9) ◽  
pp. 807 ◽  
Author(s):  
Zheng Wang ◽  
Victor O. Sadras ◽  
Marianne Hoogmoed ◽  
Xueyun Yang ◽  
Fang Huang ◽  
...  

This study assessed changes in nitrogen (N) and phosphorus (P) uptake and partitioning in response to selection for yield in milestone varieties of Chinese winter wheat (Triticum aestivum L.). We established a factorial trial combining 11 nutrient–water regimes with three (2013–14) and five (2014–15) varieties released from 1970 to 2005. Grain yield increased at a rate of 0.46% year–1, with no apparent increase in the uptake of nutrients. Nitrogen harvest index did not change, and P harvest index increased at a rate of 0.15% year–1. Consequently, yield per unit N uptake and yield per unit P uptake increased at similar rates (0.4% year–1) at the expense of nutrient concentration in grain, which declined at a rate of 0.47% year–1 for N and 0.31% year–1 for P. No trends in N nutrition index were found. Selection for yield in wheat increased the yield per unit nutrient uptake at the expense of grain nutrient concentration. Further gains in yield need to be matched by increasing N uptake to maintain grain protein. Dilution of P in grain needs to be considered in terms of the putatively undesirable role of phytate for human nutrition, and the need for P reserves in seed for crop establishment.

2019 ◽  
Vol 13 (1) ◽  
pp. 133-145
Author(s):  
Mohammed Al-Chammaa ◽  
Farid Al-Ain ◽  
Fawaz Kurdali

Background: During the freezing or canning preparation process of green grain leguminous, large amounts of shell pods are considered as agricultural organic wastes, which may be used as Green Manure (GM) for plant growth enhancement. Objective: Evaluation of the effectiveness of soil amended with shell pod wastes of pea (PGM) or faba bean (FGM) as GM on growth, nitrogen and phosphorus uptake in sorghum plants. Methods: Determination of the impact of adding four rates of nitrogen (0, 50, 100, and 150 kg N ha-1) in the form of pea (PGM) or faba bean (FGM) shell pod wastes as GM on the performance of sorghum using the indirect 15N isotopic dilution technique. Results: Sorghum plants responded positively and differently to the soil amendments with either GMs used, particularly, the PGM. In comparison with the control (N0), soil amendment with an equivalent rate of 3.5 t ha-1 of PGM (PGM100) or with 6.5 t ha-1 of FGM (FGM150) almost doubled dry weight, N and P uptake in different plant parts of sorghum. Regardless of the GM used, estimated values of %Ndfgm in sorghum plants ranged from 35% to 55% indicating that the use of pod shells as GM provided substantial portions and amounts of N requirements for sorghum. Moreover, nitrogen recoveries of added GM (%NUEgm) ranged from 29 to 45% indicating that N in both of GM forms were used effectively. Accordingly, equivalent amounts to 17 - 48 kg N ha-1 of inorganic fertilizer may be saved. The beneficial effect of incorporating pod shells in soil on sorghum N was mainly attributed to their N availability, besides to their effects on the improvement of soil N uptake, particularly when using PGM. Conclusion: The agricultural by-products of faba bean and pea pod shells could be used as GM for sorghum growth improvement by enhancing N and P uptake from soil and from the organic source.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1080 ◽  
Author(s):  
Nícolas Reinaldo Finkler ◽  
Flavia Tromboni ◽  
Iola Boëchat ◽  
Björn Gücker ◽  
Davi Gasparini Fernandes Cunha

Pollution abatement through phosphorus and nitrogen retention is a key ecosystem service provided by streams. Human activities have been changing in-stream nutrient concentrations, thereby altering lotic ecosystem functioning, especially in developing countries. We estimated nutrient uptake metrics (ambient uptake length, areal uptake rate, and uptake velocity) for nitrate (NO3–N), ammonium (NH4–N), and soluble reactive phosphorus (SRP) in four tropical Cerrado headwater streams during 2017, through whole-stream nutrient addition experiments. According to multiple regression models, ambient SRP concentration was an important explanatory variable of nutrient uptake. Further, best models included ambient NO3–N and water velocity (for NO3–N uptake metrics), dissolved oxygen (DO) and canopy cover (for NH4–N); and DO, discharge, water velocity, and temperature (for SRP). The best kinetic models describing nutrient uptake were efficiency-loss (R2 from 0.47–0.88) and first-order models (R2 from 0.60–0.85). NO3–N, NH4–N, and SRP uptake in these streams seemed coupled as a result of complex interactions of biotic P limitation, abiotic P cycling processes, and the preferential uptake of NH4–N among N-forms. Global change effects on these tropical streams, such as temperature increase and nutrient enrichment due to urban and agricultural expansion, may have adverse and partially unpredictable impacts on whole-stream nutrient processing.


2019 ◽  
Vol 12 (3) ◽  
pp. 180090 ◽  
Author(s):  
Xiaowei Hu ◽  
Brett F. Carver ◽  
Carol Powers ◽  
Liuling Yan ◽  
Lan Zhu ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 765 ◽  
Author(s):  
Latati ◽  
Dokukin ◽  
Aouiche ◽  
Rebouh ◽  
Takouachet ◽  
...  

Little is known about how the performance of legumes symbiosis affects biomass and nutrient accumulation by intercropped cereals under the field condition. To assess the agricultural services of an intercropping system; durum wheat (Triticum turgidum durum L.cv. VITRON) and chickpea (Cicer arietinum L.cv. FLIP 90/13 C) were cultivated as both intercrops and sole cropping during two growing seasons under the field trial, to compare plant biomass, nodulation, N and phosphorus (P) uptake, and N nutrition index. Both the above-ground biomass and grain yield and consequently, the amount of N taken up by intercropped durum wheat increased significantly (44%, 48%, and 30%, respectively) compared with sole cropping during the two seasons. However, intercropping decreased P uptake by both durum wheat and chickpea. The efficiency in use of rhizobial symbiosis (EURS) for intercropped chickpea was significantly higher than for chickpea grown as sole cropping. The intercropped chickpea considerably increased N (49%) and P (75%) availability in durum wheat rhizosphere. In the case of chickpea shoot, the N nutrition (defined by the ratio between actual and critical N uptake by crop) and acquisition were higher in intercropping during only the first year of cropping. Moreover, biomass, grin yield, and resource (N and P) use efficiency were significantly improved, as indicated by higher land equivalent ratio (LER > 1) in intercropping over sole cropping treatments. Our findings suggest that change in the intercropped chickpea rhizosphere-induced parameters facilitated P and N uptake, above-ground biomass, grain yield, and land use efficiency for wheat crop.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Maria Isidória Silva Gonzaga ◽  
Danyelle Chaves Figueiredo de Souza ◽  
André Quintão de Almeida ◽  
Cheryl Mackowiak ◽  
Idamar da Silva Lima ◽  
...  

ABSTRACT: Biochar has been used worldwide as an efficient soil amendment due to its beneficial interaction with soil particles and nutrients; however, studies on the effect of biochar on the availability of nutrients such as N and P in tropical soils are still missing. The objective of the study was to evaluate the effect of different types and doses of biochars on the concentration and uptake of N and P in Indian mustard plants (Brassica juncea L.) grown in a Cu contaminated soil during three successive growth cycles. The greenhouse experiment was set up as randomized block design in a 3x3 factorial scheme, with 3 types of biochars (coconut shell, orange bagasse and sewage sludge) and three rates of application (0, 30 and 60t ha-1), and 4 replicates. Biochar increased plant growth by approximately 30 to 224%; however, the orange bagasse biochar was the most effective. Biochar reduced plant N concentration in approximately 15-43%, regardless of the rate of application, indicating the need to carefully adjust N fertilization. In the last growth cycle, biochar from coconut shell and orange bagasse improved the N uptake efficiency suggesting a better amelioration effect with ageing in soil. Biochar did not affect P nutrition in Indian mustard to a great extent; however, it significantly decreased the N:P ratio in the plant.


Euphytica ◽  
1982 ◽  
Vol 31 (1) ◽  
pp. 139-150 ◽  
Author(s):  
B. R. Whan ◽  
R. Knight ◽  
A. J. Rathjen

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 313 ◽  
Author(s):  
Lukas Prey ◽  
Moritz Germer ◽  
Urs Schmidhalter

Fungicide intensity and sowing time influence the N use efficiency (NUE) of winter wheat but the underlying mechanisms, interactions of plant traits, and the temporal effects are not sufficiently understood. Therefore, organ-specific responses in NUE traits to fungicide intensity and earlier sowing were compared at two nitrogen (N) levels for six winter wheat cultivars in 2017. Plants were sampled at anthesis and at maturity and separated into chaff, grain, culms, and three leaf layers to assess their temporal contribution to aboveground dry matter (DM) and N uptake (Nup). Compared to the control treatment, across cultivars, the treatment without fungicide mostly exerted stronger and inverse effects than early sowing, on grain yield (GY, −12% without fungicide, +8% n.s. for early sowing), grain Nup (GNup, −9% n.s., +5% n.s.) as well as on grain N concentration (+4%, −2% n.s.). Grain yield in the treatment without fungicide was associated with similar total DM, as observed in the control treatment but with lower values in harvest index, thousand kernel weight, N use efficiency for GY (NUE) and N utilization efficiency. Lower GNup was associated with similar vegetative N uptake but lower values in N translocation efficiency and N harvest index. In contrast, early sowing tended to increase total DM at anthesis and maturity as well as post-anthesis assimilation, at similar harvest index and increased the number of grains per spike and total N use efficiency. Total N uptake increased after the winter season but was similar at anthesis. Although the relative N response in many traits was lower without fungicide, few fungicide x interactions were significant, and the sowing date did not interact either with N fertilization for any of the N and DM traits. The results demonstrate the positive effects of fungicides and earlier sowing on various traits related to yield formation and the efficient use of nitrogen and are discussed based on various concepts.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1737-1739 ◽  
Author(s):  
Keitaro Tawaraya ◽  
Maman Turjaman ◽  
Hanna Artuti Ekamawanti

The effect of arbuscular mycorrhizal (AM) colonization on nitrogen (N) and phosphorus (P) uptake and shoot growth of Aloe vera was investigated. Plants were inoculated with one of two AM fungi, Glomus clarum or Gigaspora decipiens. Control plants were not inoculated. Plants were grown under glasshouse conditions in a peat land soil without fertilizers for 12 months. Inoculated A. vera plants were colonized with AM fungi. Total length of leaves and number of leaves were higher in inoculated plants than uninoculated plants 12 months after inoculation. Shoot N and P concentrations were higher in inoculated plants than uninoculated plants. Shoot fresh weight was increased by AM colonization. This result suggests that AM colonization can increase the nutrient uptake and growth of A. vera.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Muaid S. Ali ◽  
Apurba Sutradhar ◽  
Ma Lourdes Edano ◽  
Jeffrey T. Edwards ◽  
Kefyalew Girma

One of the major problems that potentially hinders the use of foliar fertilization as a tool to improve nutrient use efficiency is the lack of effective formulations. A phosphite based product, Nutri-phite (3% N, 8.7% P, and 5.8% K) was used as model phosphite formulation for foliar application in winter wheat (Triticum aestivumL). Five field trials were established in the fall of 2009 and 2010 at Perkins, Perry, and Morrison, OK. Treatments encompassed the application of nitrogen (N) at 100 or 75% of crop need and phosphorus at 100 (P 100%) and 80% (P 80%) sufficiency with and without Nutri-phite. Nutri-phite was applied at one and/or two stages of wheat; GS 13 to 14 and GS 49 to 53 at the rate of 433 and 148 g ha−1P and N, respectively. Grain yield was increased by Nutri-phite treatments, especially at Morrison. Grain P concentration of plots treated with two applications of Nutri-phite ranged from 13 to 55% more than the nontreated and standard NP received plots at Perkins in 2009/10 and Perry in 2010/11. Grain P uptake was increased due to application of Nutri-phite at Perkins in 2009/10 and Morrison and Perry in 2010/11. Combined over three year-locations, Nutri-phite increased grain P concentration by 11.6%. The higher grain P concentration of plots treated with Nutri-phite compared to the other treatments clearly demonstrates its potential in improving P status of wheat grain.


Sign in / Sign up

Export Citation Format

Share Document