Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil

2018 ◽  
Vol 69 (2) ◽  
pp. 154 ◽  
Author(s):  
Rafael Battisti ◽  
Paulo C. Sentelhas ◽  
Phillip S. Parker ◽  
Claas Nendel ◽  
Gil M. De S. Câmara ◽  
...  

Management is the most important handle to improve crop yield and resilience under climate change. The aim of this study was to evaluate how irrigation, sowing date, cultivar maturity group and planting density can contribute for increasing the resilience of soybean (Glycine max (L.) Merr.) under future climate in southern Brazil. Five sites were selected to represent the range of Brazilian production systems typical for soybean cultivation. Yields were obtained from a crop-model ensemble (CROPGRO, APSIM and MONICA). Three climate scenarios were evaluated: baseline (1961–2014), and two future climate scenarios for the mid-century (2041–70) with low (+2.2°C, A1BLs) and high (+3.2°C, A1BHs) deltas for air temperature and with atmospheric [CO2] of 600 ppm. Supplementary irrigation resulted in higher and more stable yields, with gains in relation to a rainfed crop of 543, 719, 758 kg ha–1, respectively, for baseline, A1BLs and A1BHs. For sowing date, the tendencies were similar between climate scenarios, with higher yields when soybean was sown on 15 October for each simulated growing season. Cultivar maturity group 7.8 and a plant density of 50 plants m−2 resulted in higher yields in all climate scenarios. The best crop-management strategies showed similar tendency for all climate scenarios in Southern Brazil.

2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2016 ◽  
Vol 283 (1831) ◽  
pp. 20160442 ◽  
Author(s):  
Emma F. Camp ◽  
David J. Smith ◽  
Chris Evenhuis ◽  
Ian Enochs ◽  
Derek Manzello ◽  
...  

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals ( Acropora palmata and Porites astreoides ) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


2019 ◽  
Vol 111 ◽  
pp. 06006 ◽  
Author(s):  
Matteo Bilardo ◽  
Maria Ferrara ◽  
Enrico Fabrizio

In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Bangshuai Han ◽  
Shawn G. Benner ◽  
Alejandro N. Flores

:In intensively managed watersheds, water scarcity is a product of interactions between complex biophysical processes and human activities. Understanding how intensively managed watersheds respond to climate change requires modeling these coupled processes. One challenge in assessing the response of these watersheds to climate change lies in adequately capturing the trends and variability of future climates. Here we combine a stochastic weather generator together with future projections of climate change to efficiently create a large ensemble of daily weather for three climate scenarios, reflecting recent past and two future climate scenarios. With a previously developed model that captures rainfall-runoff processes and the redistribution of water according to declared water rights, we use these large ensembles to evaluate how future climate change may impact satisfied and unsatisfied irrigation throughout the study area, the Treasure Valley in Southwest Idaho, USA. The numerical experiments quantify the changing rate of allocated and unsatisfied irrigation amount and reveal that the projected temperature increase more significantly influences allocated and unsatisfied irrigation amounts than precipitation changes. The scenarios identify spatially distinct regions in the study area that are at greater risk of the occurrence of unsatisfied irrigation. This study demonstrates how combining stochastic weather generators and future climate projections can support efforts to assess future risks of negative water resource outcomes. It also allows identification of regions in the study area that may be less suitable for irrigated agriculture in future decades, potentially benefiting planners and managers.


2020 ◽  
Author(s):  
Wei Yuan ◽  
Shuang-ye Wu ◽  
Shugui Hou

<p>This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87<sup>o</sup>C in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.</p>


2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.


2014 ◽  
Vol 94 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Qi Jing ◽  
Gilles Bélanger ◽  
Budong Qian ◽  
Vern Baron

Jing, Q., Bélanger, G., Qian, B. and Baron, V. 2014. Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada. Can. J. Plant Sci. 94: 213–222. Timothy (Phleum pratense L.) is harvested twice annually in Canada but with projected climate change, an additional harvest may be possible. Our objective was to evaluate the impact on timothy dry matter (DM) yield and key nutritive value attributes of shifting from a two- to a three-harvest system under projected future climate conditions at 10 sites across Canada. Future climate scenarios were generated with a stochastic weather generator (AAFC-WG) using two global climate models under the forcing of two Intergovernmental Panel on Climate Change emission scenarios and, then, used by the CATIMO (Canadian Timothy Model) grass model to simulate DM yield and key nutritive value attributes. Under future climate scenarios (2040–2069), the additional harvest and the resulting three-harvest system are expected to increase annual DM yield (+0.46 to +2.47 Mg DM ha−1) compared with a two-harvest system across Canada but the yield increment will on average be greater in eastern Canada (1.88 Mg DM ha−1) and Agassiz (2.02 Mg DM ha−1) than in the prairie provinces of Canada (0.84 Mg DM ha−1). The DM yield of the first harvest in a three-harvest system is expected to be less than in the two-harvest system, while that of the second harvest would be greater. Decreases in average neutral detergent fibre (NDF) concentration (−19 g kg−1 DM) and digestibility (dNDF, −5 g kg−1 NDF) are also expected with the three-harvest system under future conditions. Our results indicate that timothy will take advantage of projected climate change, through taking a third harvest, thereby increasing annual DM production.


Sign in / Sign up

Export Citation Format

Share Document