scholarly journals Cropping practices influence incidence of herbicide resistance in annual ryegrass (Lolium rigidum) in Australia

2019 ◽  
Vol 70 (1) ◽  
pp. 77 ◽  
Author(s):  
J. C. Broster ◽  
J. E. Pratley ◽  
R. H. L. Ip ◽  
L. Ang ◽  
K. P. Seng

Herbicide resistance is a common occurrence in southern Australia. The evolution of herbicide resistance is influenced by the selection pressure placed on the weed species controlled by that herbicide. Results from resistance screening of ~4500 annual ryegrass (Lolium rigidum Gaud.) samples were entered in a GIS database, together with several agricultural parameters used in the Australian Bureau of Statistics Agricultural Surveys. This allowed a study of the associations between mode of action of resistance, geographic distribution of resistance across southern Australia, and farming practices employed in particular regions. Cultivation was negatively associated with resistances in acetyl-CoA carboxylase (ACCase)-inhibiting cyclohexanedione and acetolactate synthase (ALS)-inhibiting herbicides. Higher proportions of wheat sown were associated with higher incidences of resistance. ACCase-inhibiting aryloxyphenoxypropionate and cyclohexanedione and ALS-inhibiting resistances were higher in those shires where soils were predominantly acidic. This study demonstrates the association between farm practice and the evolution of herbicide resistance. The analysis provides reinforcement to the principle of rotating chemical modes of action with non-chemical weed control measures to minimise the risk of herbicide resistance evolution in any farming system.


1995 ◽  
Vol 35 (1) ◽  
pp. 67 ◽  
Author(s):  
GS Gill

Annual ryegrass (Lolium rigidum) samples from the cropping belt of Western Australia were screened for herbicide resistance in 1992 and 1993. There was a strong relationship between the number of applications of a herbicide group and development of resistance in ryegrass populations. Resistance was detected in all populations that received >7 applications of aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides or >4 applications of sulfonylurea (SU) herbicides. Some AOPP-resistant populations had also developed crossresistance to SU herbicides, a group with a different mode of action. Inclusion of pasture in the rotation had little effect on the relationship between the number of applications of the AOPP and SU herbicides and development of resistance. A subset of 33 populations was chosen to determine the response of triasulfuron-resistant populations to sulfometuron, a nonselective SU herbicide which has been shown to be effective against metabolic-type resistance. All triasulfuron-resistant populations were found to be resistant to sulfometuron, possibly due to insensitive acetolactate synthase (ALS) in these ryegrass populations. Some of these SU-resistant populations were also resistant to the imidazolinone herbicide imazethapyr, another ALS inhibitor. However, there were several populations with a high level of SU resistance that were still susceptible to imazethapyr.



2019 ◽  
Vol 70 (3) ◽  
pp. 283 ◽  
Author(s):  
J. C. Broster ◽  
J. E. Pratley ◽  
R. H. L. Ip ◽  
L. Ang ◽  
K. P. Seng

Charles Sturt University has operated a commercial herbicide resistance testing service since 1991, following a random survey of the South West Slopes region of New South Wales that identified significant incidence of herbicide resistance in annual ryegrass (Lolium rigidum Gaud.). Other surveys of cropping regions of southern Australia conducted at that time also found a significant incidence of resistance. In the subsequent 25-year period, the testing service has received samples from the majority of the southern Australian cropping belt. Overall, 80% of samples tested were resistant to acetyl-CoA carboxylase (ACCase) inhibiting aryloxyphenoxypropionate and phenylpyrazole herbicides, 56% to acetolactate synthase (ALS) inhibiting herbicides, and 24% to ACCase-inhibiting cyclohexanedione herbicides. The incidences of resistance to inhibitors of photosynthesis at PSII, tubulin-formation inhibitors, and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase inhibiting herbicides have remained <10% of samples tested. The relationships between many herbicide groups and subgroups are discussed, as is the variability in resistance incidence and the forms of cross or multiple resistance for each state. This paper builds on an earlier publication of 14 years of testing history. At >5000 samples, the size and geographical spread of this dataset allows for valuable analyses of the relationships present in herbicide-resistant populations of annual ryegrass.



Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.



2004 ◽  
Vol 44 (12) ◽  
pp. 1195 ◽  
Author(s):  
M. Monjardino ◽  
D. J. Pannell ◽  
S. B. Powles

Most cropping farms in Western Australia must deal with the management of herbicide-resistant populations of weeds such as annual ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Farmers are approaching the problem of herbicide resistance by adopting integrated weed management systems, which allow weed control with a range of different techniques. These systems include non-herbicide methods ranging from delayed seeding and high crop seeding rates to the use of non-cropping phases in the rotation. In this paper, the Multi-species RIM (resistance and integrated management) model was used to investigate the value of including non-cropping phases in the crop rotation. Non-crop options investigated here were haying and green manuring. Despite them providing excellent weed control, it was found that inclusion of these non-cropping phases did not increase returns, except in cases of extreme weed numbers and high levels of herbicide resistance.



Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Sarah Berger ◽  
Paul T. Madeira ◽  
Jason Ferrell ◽  
Lyn Gettys ◽  
Sergio Morichetti ◽  
...  

Palmer amaranth has greatly disrupted agricultural practices in the United States with its rapid growth and rapid evolution of herbicide resistance. This weed species is now suspected in Argentina. To document whether the suspected plant populations are indeed Palmer amaranth, molecular comparisons to known standards were conducted. Additionally, these same plant populations were screened for possible herbicide resistance to several acetolactate synthase (ALS)-inhibiting herbicides. Sequencing data confirmed that suspected populations (A2, A3, A4) were indeed Palmer amaranth. Another population (A1) was tested to determine whether hybridization had occurred between Palmer amaranth and mucronate amaranth the native amaranth species of the region. Tests confirmed that no hybridization had occurred and that A1 was simply a unique phenotype of mucronate amaranth. Each population was screened for resistance to imazapic, nicosulfuron, and diclosulam. All Palmer amaranth populations from Argentina were shown to be resistant to at least one ALS-inhibiting herbicide. The populations were then subjected to further testing to identify the mutation responsible for the observed ALS resistance. All mucronate amaranth populations exhibited a mutation previously documented to confer ALS resistance (S653N). No known resistance-conferring mutations were found in Palmer amaranth.



2009 ◽  
Vol 23 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Hugh J. Beckie ◽  
Xavier Reboud

Herbicide rotations and mixtures are widely recommended to manage herbicide resistance. However, little research has quantified how these practices actually affect the selection of herbicide resistance in weeds. A 4-yr experiment was conducted in western Canada from 2004 to 2007 to examine the impact of herbicide rotation and mixture in selecting for acetolactate synthase (ALS) inhibitor resistance in the annual broadleaf weed, field pennycress, co-occurring in wheat. Treatments consisted of the ALS-inhibitor herbicide, ethametsulfuron, applied in a mixture with bromoxynil/MCPA formulated herbicide (photosystem-II inhibitor/synthetic auxin), or in rotation with the non-ALS inhibitor at an ALS-inhibitor application frequency of 0, 25, 50, 75, and 100% (i.e., zero to four applications, respectively) over the 4-yr period. The field pennycress seed bank at the start of the experiment contained 5% ethametsulfuron-resistant seed. Although weed control was only marginally reduced, resistance frequency of progeny of survivors increased markedly after one ALS-inhibitor application. At the end of the experiment, the level of resistance in the seed bank was buffered by susceptible seed, increasing from 29% of recruited seedlings after one application to 85% after four applications of the ALS inhibitor. The level of resistance in the seed bank for the mixture treatment after 4 yr remained similar to that of the nontreated (weedy) control or 0% ALS-inhibitor rotation frequency treatment. The results of this study demonstrate how rapidly ALS-inhibitor resistance can evolve as a consequence of repeated application of herbicides with this site of action, and supports epidemiological information from farmer questionnaire surveys and modeling simulations that mixtures are more effective than rotations in mitigating resistance evolution through herbicide selection.



2012 ◽  
Vol 26 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Peter Boutsalis ◽  
Gurjeet S. Gill ◽  
Christopher Preston

Herbicide resistance in rigid ryegrass is an escalating problem in grain-cropping fields of southeastern Australia due to increased reliance on herbicides as the main method for weed control. Weed surveys were conducted between 1998 and 2009 to identify the extent of herbicide-resistant rigid ryegrass across this region to dinitroaniline, and acetolactate synthase- and acetyl coenzyme A (CoA) carboxylase-inhibiting herbicides. Rigid ryegrass was collected from cropped fields chosen at random. Outdoor pot studies were conducted during the normal winter growing season for rigid ryegrass with PRE-applied trifluralin and POST-applied diclofop-methyl, chlorsulfuron, tralkoxydim, pinoxaden, and clethodim. Herbicide resistance to trifluralin in rigid ryegrass was identified in one-third of the fields surveyed from South Australia, whereas less than 5% of fields in Victoria exhibited resistance. In contrast, resistance to chlorsulfuron was detected in at least half of the cropped fields across southeastern Australia. Resistance to the cereal-selective aryloxyphenoxypropionate-inhibiting herbicides diclofop-methyl, tralkoxydim, and pinoxaden ranged between 30 and 60% in most regions, whereas in marginal cropping areas less than 12% of fields exhibited resistance. Resistance to clethodim varied between 0 and 61%. Higher levels of resistance to clethodim were identified in the more intensively cropped, higher-rainfall districts where pulse and canola crops are common. These weed surveys demonstrated that a high incidence of resistance to most tested herbicides was present in rigid ryegrass from cropped fields in southeastern Australia, which presents a major challenge for crop producers.



Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1879
Author(s):  
Martina Badano Perez ◽  
Hugh J. Beckie ◽  
Gregory R. Cawthray ◽  
Danica E. Goggin ◽  
Roberto Busi

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.



2006 ◽  
Vol 46 (9) ◽  
pp. 1151 ◽  
Author(s):  
J. C. Broster ◽  
J. E. Pratley

Charles Sturt University commenced herbicide resistance monitoring in 1991. A random survey in 1991 to determine the level of resistance in annual ryegrass (Lolium rigidum) to selective herbicides across the south-west slopes region of New South Wales found that 30% of samples were resistant to at least 1 herbicide. A subsequent survey of commercially available ryegrass seed found that 58% of these samples were resistant to at least 1 herbicide. As a result of these findings, a commercial testing service was established and has since received samples from a large proportion of the southern Australian cropping belt. Seventy-seven percent of samples tested were resistant to Group AI, 40% to Group B and 22% to Group AII herbicides. Lower levels of resistance were found to Group D (8%), Group C (1%) and Group M (0.4%) herbicides. The correlation between resistance in Group AI and AII herbicides was lower than expected given that these herbicides are considered to have the same mode of action. Within the Group AI herbicides the observed response of the samples was consistent across herbicide formulations. Resistance to clethodim varied from observed responses to other Group AII herbicides. The variation in resistance levels (and degree of multiple resistance) in each Australian state is discussed in relation to environmental conditions and cultural practices. The size of this dataset allows for the analysis of the relationships present among herbicide resistant annual ryegrass.



1994 ◽  
Vol 34 (5) ◽  
pp. 633 ◽  
Author(s):  
IT Riley ◽  
GS Gill

Samples of annual ryegrass (Lolium rigidum Gaudin) seed tested for herbicide resistance were examined for seed-galls of Anguina funesta, the nematode vector of Clavihacter toxicus the causal bacterium in annual ryegrass toxicity (ARGT). Of the 246 samples examined, 63% contained galls, with concentrations up to 1400 galls per 10 g of seed. Higher herbicide resistance was associated with increased concentrations of A. funesta. We conclude that use of selective herbicides for ARGT control may have contributed to the rapid development of herbicide resistance.



Sign in / Sign up

Export Citation Format

Share Document