Relationship between soil apparent electrical conductivity and forage yield in temperate pastures according to nitrogen availability and growing season

2019 ◽  
Vol 70 (10) ◽  
pp. 908 ◽  
Author(s):  
P. L. Cicore ◽  
M. Castro Franco ◽  
N. R. Peralta ◽  
J. R. Marques da Silva ◽  
J. L. Costa

Mapping of the apparent soil electrical conductivity (ECa) can be used to estimate the variability of forage yield within a plot. However, forage production can vary according to the growing season and to soil properties that do not affect the ECa (e.g. nitrogen (N) content). The aim of this study was to assess the relationship between ECa and forage yield of tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) during different regrowth periods and contrasting levels of N availability and then use this information to determine potential management zones. The ECa was measured and geo-referenced in a 5.75-ha paddock that sustained a permanent pasture dominated by tall fescue. In addition, a 30 m by 30 m grid cell size was chosen and 43 sampling areas, each 4 m2 in size, were geo-referenced and divided into two experimental units of 1 m by 2 m, one of which was fertilised with 250 kg N ha–1 (N250) at the beginning of four regrowth periods (spring 2015, spring 2016, autumn 2016 and autumn 2017) and the other was not fertilised with N (N0). At the end of each regrowth period, we estimated the accumulated biomass. During the spring growing season, accumulated biomass was positively associated with ECa in both N0 and N250 treatments (R2 = 47% and 54%, respectively). By contrast, in autumn, accumulated biomass and ECa were poorly associated (R2 = 10% and 27% for N0 and N250). This may be due to seasonal interactions that alter soil–yield relationships. To assess whether ECa can be used to determine management zones, the differences in accumulated biomass were compared through analysis of variance. Results showed that ECa is associated with the spatial distribution of tall fescue forage yield variability in spring at different N availabilities. Thus, ECa can be reliably used for defining management zones in marginal soils under permanent pastures.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 31-31
Author(s):  
Kevin R Meng ◽  
Eric Bailey ◽  
Josh Zeltwanger ◽  
Hannah Allen ◽  
Mikaela Adams ◽  
...  

Abstract Chemical seed-head suppression of endophyte infected tall fescue (Lolium arundinaceum) improves stocker cattle performance but may decrease forage yield. Spring nitrogen application increases tall fescue growth with a concomitant increase in ergot alkaloids, produced by the symbiotic endophyte Epichloë coenophiala. We hypothesized that greater amounts of nitrogen applied to tall fescue would increase forage yield and offset losses in forage production from chemical suppression of seed-heads with metsulfuron without effect on alkaloid concentration. Ninety-six steers (270 ± 20 kg) were randomly assigned to one of sixteen paddocks (1.8 ha) on April 18 and continuously grazed for 57 d. Paddocks were blocked by previous use (n = 4) and randomly assigned to one of four treatments; no metsulfuron, no nitrogen (NEGCON), metsulfuron with 0 (MET0), 67 (MET67), or 134 (MET134) kg/ha of ammonium nitrate, applied March 11. Steers grazing MET0 paddocks were removed 17 d early due to insufficient forage availability. Steer weight, forage yield, forage nutritive value and ergot alkaloids in forage samples were measured monthly. Seed-head frequency and species composition were determined in June. Metsulfuron application reduced (P < 0.01) tall fescue seed-heads by 80%. Metsulfuron decreased (P = 0.03) ergovaline but ergovaline increased (P < 0.01) at each monthly sampling across treatments. Nitrogen had no impact on ergovaline concentration (P = 0.50). Forage yield tended to be least (P = 0.07) for MET0, intermediate for NEGCON and MET67, and tended to be greatest for MET134 (P = 0.08). Steer ADG was not affected by treatment (P < 0.80). Metsulfuron decreased NDF (P=0.02) regardless of fertilization rate. Forage CP increased with fertilization (P < 0.01) and no differences were detected between NEGCON and MET0 (P = 0.45). Species composition was not impacted (P >0.07) by treatment. Metsulfuron decreased seed-head growth and ergovaline concentration in tall fescue. Additional nitrogen fertilizer ameliorated forage yield lost to metsulfuron application but did not impact steer gain.


HortScience ◽  
2011 ◽  
Vol 46 (9) ◽  
pp. 1294-1297 ◽  
Author(s):  
M. Lenny Wells

Nitrogen (N) fertilizer application to plants at rates not adjusted for the N contribution from soil N availability may result in overapplication of fertilizer. Further understanding of proper timing of N applications based on soil N dynamics and plant demand can be valuable information for the efficient use of fertilizer N. The present study measures soil N dynamics in a pecan orchard under various N fertilizer regimes on a southeastern U.S. Coastal Plain soil. The following treatments were evaluated: 1) crimson clover (Trifolium incarnatum L.); 2) poultry litter; 3) crimson clover + poultry litter; 4) ammonium nitrate (NH4NO3); and 5) untreated control. Crimson clover provided from 20 to 75 kg·ha−1 N over the course of the two growing seasons; however, most of the available N from crimson clover became available late in the growing season. As a result, supplemental N may be required in spring where crimson clover is used as an orchard cover crop. Poultry litter, with and without clover, provided available N consistently throughout the growing season with more N becoming available later in the season than earlier. This suggests that poultry litter applications for pecan should be timed before budbreak. Under optimum environmental conditions, N from NH4NO3 is most available within the first 30 days of application. Thus, it appears that synthetic fertilizer applications using NH4NO3 as the N source should be targeted at or 2 to 3 weeks after pecan budbreak.


2006 ◽  
Vol 46 (3) ◽  
pp. 319 ◽  
Author(s):  
K. L. Greenwood ◽  
K. E. Dellow ◽  
G. N. Mundy ◽  
K. B. Kelly ◽  
S. M. Austin

Pastures are the main source of energy and nutrients for dairy cows in the irrigated dairy region of northern Victoria, yet annual production and utilisation of pasture have remained static over the last 20 years. Previous small plot research has shown that pasture yields can be increased through systems of soil modification that improve soil structure and alleviate limitations to root growth. We compared the yield and nutritive characteristics of 4 forage species [tall fescue (Festuca arundinacea), lucerne (Medicago sativa), phalaris (Phalaris aquatica) and perennial ryegrass (Lolium perenne)] on soils which had been modified using commercially-available equipment and using spray irrigation at 2 frequencies. In year 1 (2000–01), annual yields of the forages were tall fescue: 21.2 t dry matter (DM)/ha; lucerne: 20.5 t DM/ha; phalaris: 19.8 t DM/ha; and perennial ryegrass: 20.8 t DM/ha. In the second year of the experiment, annual yields averaged 28.9 t DM/ha for tall fescue, 26.1 t DM/ha for lucerne, 31.6 t DM/ha for phalaris and 23.2 t DM/ha for perennial ryegrass. There was no consistent response in yield of any species to soil modification. The improvements in soil structure achieved with soil modification were probably not large enough to result in yield responses. Yields were greater when frequently irrigated, with the exception of perennial ryegrass in the second year. Most of the yield benefit due to frequent irrigation was limited to the summer months. No yield data showed significant soil by irrigation frequency interaction. There were significant differences in forage nutritive characteristics between the 4 species. The lower crude protein content of lucerne would be at least partly due to the frequent application of nitrogen fertiliser to the grasses. Tall fescue usually had similar nutritive characteristics to perennial ryegrass in terms of metabolisable energy, protein and NDF. Phalaris had high fibre contents and low metabolisable energy in summer. We conclude that it is not feasible, at this time, to improve yields of irrigated forages through soil modification on a commercial scale.


2013 ◽  
Vol 93 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Donald Thompson

Thompson, D. J. 2013. Yield and nutritive value of irrigated tall fescue compared with orchardgrass: in monocultures or mixed with alfalfa. Can. J. Plant Sci. 93: 799–807. Orchardgrass (Dactylis glomerata L.) is commonly grown for irrigated forage production in interior British Columbia. Tall fescue [Schedonorus phoenix (Schop.) Holub.] is also adapted to the area but no comparative trials have been reported. Three varieties of each grass species were grown in monocultures or in mixtures with alfalfa at three irrigated sites throughout southern interior British Columbia. Study objectives included comparing the forage yield and nutritive value of the following groups: (1) tall fescue and orchardgrass monocultures, (2) tall fescue and orchardgrass mixtures with alfalfa and (3) grass-alfalfa mixtures with monocultures. In monoculture, tall fescue yield was 9% greater than orchardgrass (significantly greater yield at 3 of 6 site-years), though forage nutritive values were similar. Mixtures of the two grasses with alfalfa had similar yields, but those containing tall fescue had superior nutritive value. Alfalfa contributed a greater percentage to total yield and had higher survival when mixed with tall fescue. Tall fescue is a viable alternative to orchardgrass for irrigated forage production in monoculture and may be more suitable for mixtures with alfalfa. Our findings demonstrate a functional diversity effect; grass-alfalfa mixtures over-yielded the mean of the alfalfa, orchardgrass, and tall fescue monocultures by 12%.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Elizabeth A. Myhre

As heat-dried biosolids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried biosolids and determine if current guidelines were adequate for estimating application rates. Heat-dried biosolids were surface applied to tall fescue (Festuca arundinaceaSchreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two biosolids exceeded 60% of total N applied, while urea N equivalent for the third biosolids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried biosolids, but this research shows that some heat-dried materials fall well above that range.


2010 ◽  
Vol 7 (4) ◽  
pp. 5829-5858
Author(s):  
L. Yan ◽  
S. Chen ◽  
J. Huang ◽  
G. Lin

Abstract. Changes in precipitation patterns and nitrogen (N) cycling across the globe are likely to affect ecosystem primary productivity and CO2 exchanges, especially in the arid and semi-arid grasslands because of their co-limitation of water and N supply. To evaluate the effects of water and N availability on ecosystem CO2 fluxes, we conducted a manipulative field experiment with water and N addition in a temperate steppe of Northern China. The growing-season CO2 fluxes, including net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) were examined in 2006 and 2007 with remarkably different amount of precipitation. Net carbon uptakes were found in all of treatments over the growing season in both years. However, their magnitude had inter-annual variations which coincided with the seasonal changes of precipitation amount. During these two growing seasons, water and N addition significantly increased NEE, owing to higher stimulation of GEP than ER. Our results suggest that net primary productivity, especially dominant species' biomass, correlated closely with variations in GEP and ER. Soil moisture was the driving environmental factor controlling seasonal and inter-annual variability in GEP and ER subsequently inducing changes in NEE. Moreover, the strengths of both water and N addition effects were greatly depended on the initial water condition in this temperate typical steppe.


2016 ◽  
Vol 39 (6) ◽  
Author(s):  
Ridzwan A. Halim ◽  
Ali Baghdadi ◽  
Ali Ghasemzadeh ◽  
Mahdi Ebrahimi ◽  
Radziah Othman ◽  
...  

Cereal-based forage production could be considered to have potential to supply great deal of energy-rich feed in animal diets. Experiment was conducted to evaluate effect of corn-soybean combinations of 75:25, 50:50 and 25:75 in addition to monocrops of corn and soybean to detremine forage dry matter (DM) yield and quality in corn-soybean intercropping. The crop combination ratio had significant effects on dry matter yield and nutritive quality of forage. The ratio of 75:25 and 50:50 recorded DM yields similar to those of monocropped corn (14.77 t/ha). Forage quality in terms of crude protein (CP) (75:25 ratio 12.75%, 50:50 ratio 13.73% and 25:75 ratio 14.68%) was improved by intercropping due to higher nitrogen availability for corn in intercropping compared with its sole crop (10.83% CP). Increase ratio of corn in corn-soybean mixture, negatively affectd neutral detergent fiber (NDF), acid detergent fiber (ADF) of forage and declined with increasing ratio of soybean plants. Combination ratio of 50:50 gave higher protein yield (1886.45 kg/ha) than other crop combination ratio. Among all the combination ratios, the 50:50 corn-soybean ratio was the optimum giving highest forage yield, protein content as well as protein yield.


2011 ◽  
Vol 91 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Carole Lafrenière ◽  
Raynald Drapeau

Lafrenière, C. and Drapeau, R. 2011. Seeding patterns and companion grasses affect total forage yield and components of binary red clover–grass mixtures. Can. J. Plant Sci. 91: 91–97. Red clover (Trifolium pratense L.) is the most popular seeded legume for forage production in northern Quebec and Ontario because of the poorly drained soils that prevail in these regions. The objective of this experiment was to determine which seeding patterns [mixed within a row (MR), single alternate rows (1+1), or double alternate rows (2+2)] and which companion grasses (smooth bromegrass, Bromus inermis L.; tall fescue, Festuca arundinacea Schreb.; orchardgrass, Dactylis glomerata L.; or timothy, Phleum pratense L.), in association with red clover, were best for sustaining the total forage yield of a red clover–grass mixture and how these factors affect red clover and grass components. Test plots were established at Kapuskasing, ON, and Normandin, QC. At each site, two independent seedings were performed and harvested over 3 yr following the seeding year. Total dry matter (DM) yield and contribution of red clover grasses and weeds to total forage yield were measured. The MR pattern gave higher yield over both alternate seeding patterns by nearly 0.5 Mg DM ha−1 at the Normandin site and 1.0 Mg DM ha–1 at the Kapuskasing site. Neither the seeding pattern nor the companion grass species improved significantly the contribution of red clover to total forage yield beyond the second production year even though there were differences between sites. Environmental conditions, principally high precipitation in the fall, and maturity stage at harvest resulted in major differences between sites. Results from this experiment showed that tall fescue and orchardgrass could be good alternatives to timothy or bromegrass in association with red clover given that plots were still productive in the third production year and invasion by weeds was lower.


2004 ◽  
Vol 84 (1) ◽  
pp. 149-153 ◽  
Author(s):  
S. A. Asamoah ◽  
E. W. Bork ◽  
B. D. Irving ◽  
M. A. Price ◽  
R. J. Hudson

We evaluated the temporal dynamics of herbage biomass and protein within riparian meadows and upland grasslands of native Aspen Parkland rangeland to understand the contribution of each to lives tock foraging. For the growing season monitored, meadows were greater in forage yield and crude protein (P < 0.05), leading to important implications for sustainable livestock production and rangeland conservation. Key words: Crude protein, forage production, riparian meadow, upland grassland


Crop Science ◽  
1982 ◽  
Vol 22 (4) ◽  
pp. 709-711 ◽  
Author(s):  
C. J. Cohen ◽  
D. O. Chilcote ◽  
R. V. Frakes

Sign in / Sign up

Export Citation Format

Share Document