Poor incorporation of lime limits grain yield response in wheat

2006 ◽  
Vol 46 (11) ◽  
pp. 1481 ◽  
Author(s):  
B. J. Scott ◽  
N. E. Coombes

Thorough mixing of lime with the soil is a standard recommendation for lime application. However, the implements and passes that may be used to achieve this in Australian cereal farming are unclear. Therefore, 2 experiments were conducted to examine the incorporation of lime applied at 0, 2 and 5 t/ha using a range of different agricultural implements and numbers of cultivation events. Shoot dry matter and grain yield of wheat were measured in the year of lime application in both experiments. The plots were resown to wheat in the following season by direct drilling, and measurements were repeated. In a dry season, high soil disturbance (rotary hoe and disc harrow) improved the response of wheat to lime in the first year of experiment 1. In experiment 2, rainfall was higher, and the advantage from thorough incorporation was less clear. However, the rank order of incorporation methods and lime responsiveness was positively correlated with that in experiment 1 for both dry matter and grain yield; thorough incorporation tended to give better responses to lime than ‘poor’ incorporation (light harrowing). In the second year of experiment 1 there was limited evidence of the influence of incorporation method on lime response. In the second season of both experiments the effects of incorporation method on lime response had dissipated or other effects were more important. We found that to maximise grain yield responses to lime, the most effective incorporation was achieved with a disc harrow or with multiple passes with a tined implement (scarifier). Incorporation limited to a light harrow was inadequate. However, any effects of method of incorporation reduced or disappeared in the following season, even when direct drilling was used and there was limited further soil disturbance.

1985 ◽  
Vol 25 (1) ◽  
pp. 157 ◽  
Author(s):  
LJ Horsnell

Subterranean clover responds poorly to superphosphate application on some acid soils of the Southern Tablelands of New South Wales. A field experiment was undertaken, for two years, to examine the effects of incorporating large additional amounts of superphosphate or rock phosphate in the soil, with and without lime, on the growth of subterranean clover, lucerne and phalaris sown with recommended rates of lime superphosphate. Dry matter responses of subterranean clover and lucerne to superphosphate topdressing in the second year were also recorded. In the first year, subterranean clover growth was increased by the additional lime and by lime plus superphosphate. Lucerne growth was increased by additional lime. In the second year, the growth of subterranean clover was increased by the lime treatments and the superphosphate treatments applied in the previous year and by the deep incorporation into the soil of lime and superphosphate together. Subterranean clover growth also responded to the application of rock phosphate without lime. Lucerne dry matter production in the second year was increased by the lime, superphosphate and rock phosphate treatments applied in the first year. Lime application increased the yield responses of subterranean clover and lucerne to superphosphate topdressed in the second year. Lime application had no effect on the nitrogen content of the clover but increased that of lucerne. Lime application reduced the aluminium levels in the tops of all three species. The data suggest that the responsiveness of pastures to superphosphate on these soils is increased by the application of lime and rock phosphate and is related to low nitrogen fixation and high aluminium levels in the plant.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


2014 ◽  
Vol 65 (5) ◽  
pp. 428 ◽  
Author(s):  
R. A. Reen ◽  
J. P. Thompson ◽  
T. G. Clewett ◽  
J. G. Sheedy ◽  
K. L. Bell

In Australia, root-lesion nematode (RLN; Pratylenchus thornei) significantly reduces chickpea and wheat yields. Yield losses from RLN have been determined through use of nematicide; however, nematicide does not control nematodes in Vertosol subsoils in Australia’s northern grains region. The alternative strategy of assessing yield response, by using crop rotation with resistant and susceptible crops to manipulate nematode populations, is poorly documented for chickpea. Our research tested the effectiveness of crop rotation and nematicide against P. thornei populations for assessing yield loss in chickpea. First-year field plots included canola, linseed, canaryseed, wheat and a fallow treatment, all with and without the nematicide aldicarb. The following year, aldicarb was reapplied and plots were re-cropped with four chickpea cultivars and one intolerant wheat cultivar. Highest P. thornei populations were after wheat, at 0.45–0.6 m soil depth. Aldicarb was effective to just 0.3 m for wheat and 0.45 m for other crops, and increased subsequent crop grain yield by only 6%. Canola, linseed and fallow treatments reduced P. thornei populations, but low mycorrhizal spore levels in the soil after canola and fallow treatments were associated with low chickpea yield. Canaryseed kept P. thornei populations low throughout the soil profile and maintained mycorrhizal spore densities, resulting in grain yield increases of up to 25% for chickpea cultivars and 55% for wheat when pre-cropped with canaryseed compared with wheat. Tolerance indices for chickpeas based on yield differences after paired wheat and canaryseed plots ranged from 80% for cv. Tyson to 95% for cv. Lasseter and this strategy is recommended for future use in assessing tolerance.


2002 ◽  
Vol 138 (2) ◽  
pp. 153-169 ◽  
Author(s):  
M. J. FOULKES ◽  
R. K. SCOTT ◽  
R. SYLVESTER-BRADLEY

Experiments in three dry years, 1993/94, 1994/95 and 1995/96, on a medium sand at ADAS Gleadthorpe, England, tested responses of six winter wheat cultivars to irrigation of dry-matter growth, partitioning of dry matter to leaf, stem and ear throughout the season, and to grain at final harvest. Cultivars (Haven, Maris Huntsman, Mercia, Rialto, Riband and Soissons) were selected for contrasts in flowering date and stem soluble carbohydrate. Maximum soil moisture deficit (SMD) exceeded 140 mm in all years, with large deficits (>75 mm) from early June in 1994 and from May in 1995 and 1996. The main effects of drought on partitioning of biomass were for a decrease in the proportion of the crop as lamina in the pre-flowering period, and then earlier retranslocation of stem reserves to grains during the first half of grain filling. Restricted water availability decreased grain yield by 1·83 t/ha in 1994 (P<0·05), and with more prolonged droughts, by 3·06 t/ha in 1995 (P<0·001) and by 4·55 t/ha in 1996 (P<0·001). Averaged over the three years, grain yield responses of the six cultivars differed significantly (P<0·05). Rialto and Mercia lost only 2·8 t/ha compared with Riband and Haven which lost 3·5 t/ha. Losses for Soissons and Maris Huntsman were intermediate. In the two years with prolonged drought, the biomass depression was on average greater for Haven (6·0 t/ha) than for Maris Huntsman (4·2 t/ha) (P<0·05). Thus, the grain yield sensitivity of Haven to drought derived, in part, from a sensitivity of biomass growth to drought. Harvest index (HI; ratio of grain to above-ground dry matter at harvest) responses of the six cultivars to irrigation also differed (P<0·05) and contributed to the yield responses. The smallest decrease in HI of the six cultivars with restricted water availability was shown by Rialto (−0·033); this partially explained the drought resistance for this cultivar. The largest decrease was for Maris Huntsman (−0·072). The cultivars differed in flowering dates by up to 9 days but these were poorly correlated with grain yield responses to irrigation. Stem soluble carbohydrate at flowering varied amongst cultivars from 220 to 300 g/m2 in the unirrigated crop; greater accumulation appeared to be associated with better maintenance of HI under drought. It is concluded that high stem-soluble carbohydrate reserves could be used to improve drought resistance in the UK's temperate climate, but that early flowering seems less likely to be useful.


1972 ◽  
Vol 20 (2) ◽  
pp. 81-96
Author(s):  
G.C. Ennik

Results of several field trials on the response of permanent grass swards and of sown swards with and without clover to application of thionazin (as Nemafos) at about 8 ml/m2 before each cut are described. Where N was the main factor limiting growth, plots with Nemafos grew better than the controls because of an increase in available soil N. At high levels of N, growth was improved because of direct stimulation of regrowth after cutting. Nemafos had a favourable effect, which lasted longer with successive cuts, on the development and vigour of tillers. The yield responses were unrelated to control of nematodes. [See also HbA 39, 422]. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1976 ◽  
Vol 16 (81) ◽  
pp. 542 ◽  
Author(s):  
WH Winter ◽  
GP Gillman

The response of a Stylosanthes guyanensislBrachiaria decumbens pasture to phosphorus on a yellow earth soil in northern Cape York Peninsula was studied over three years. Establishment rates of 0 to 130 kg ha-1 P were used followed by various combinations of 0 or 20 kg ha-1 P in the next two years. With comparisons made at the same cumulative P rate the dry matter and nitrogen yields were not affected by timing of application but P yield was increased in the third year when P was freshly applied. The dry matter yield response was modified by the botanical composition of the pasture. In the first year the pasture was 90-95 per cent legume and 110 kg ha-1 P was required to give 90 per cent of the presumed maximum yield whereas in the third year when the legume content was lower, (increasing from 10 to 40 per cent with P rate) this requirement had been reduced to about 90 kg ha-1 P. The third year P yield data were used to show that the value of applied P declined by about 70 per cent each year. After three years all the applied P was recovered in the 0-60 cm zone and the distribution was not affected by timing of application. In the 0-10 cm zone the acid extractable P increased from 0 with no P applied to 40 p.p.m. with 150 kg ha-1 P applied.


1985 ◽  
Vol 105 (2) ◽  
pp. 381-387 ◽  
Author(s):  
D. Reid

SUMMARYThe yield results are reported for an experiment in which 21 rates of nitrogen fertilizer were applied on pure-sown swards of four grasses, S. 24 and Barvestra perennial ryegrass, S. 37 cocksfoot and S. 53 meadow fescue. Growth curves fitted to the herbage yield data for each grass in each year are presented. On average the total dry-matter yield curves for the two ryegrasses were similar to one another, but showed a slightly smaller response to nitrogen rates below 300 kg/ha than did S. 23 ryegrass in an earlier experiment, and a more rapid decrease in response at higher rates. S. 37 cocksfoot had a similar dry-matter yield response to the ryegrasses at the low nitrogen rates, but the response decreased more rapidly at nitrogen rates over 250 kg/ha. The dry-matter yield response of S. 53 fescue decreased even more rapidly with nitrogen rates over 200 kg/ha. The mean estimates of the optimal nitrogen rate for each of the four grasses, i.e. the nitrogen rate at which the dry-matter response had decreased to 10 kg/kg N, was 380, 372, 357 and 327 kg N/ha for S. 24, Barvestra, S. 37 and S. 53 respectively, compared with 409 kg/ha for S. 23 ryegrass in the earlier experiment.


Author(s):  
Smart Augustine Ojobor ◽  
Collins N Egbuchua

The research was conducted to monitor the influent of abattoir wastewater compost on rice growth and yield in Benin-Owah River Basin in Illah, Delta State, Nigeria. The compost was applied at 0, 2.5, 5.0, 10 t/ha, and NPK15:15:15 at 250 kg/ha laid in randomized complete block design with four replicates. Rice seeds were sown for two years, and residual effects were evaluated in the third year. Rice plant height, stem circumference, and the number of tillers was measured at two weeks intervals while rice yields have taken at harvest. Soil samples were taken yearly to monitor nutrient changes. Data obtained were analyzed with analysis of variance and mean separated with Duncan Multiple Range Test at α0.05. In the first year, NPK15:15:15 significantly gave the highest dry matter (6.28±1.45 t/ha) and grain yield (2.4±0.53 t/ha). While in the second year, 10 t/ha treatment produced the dry matter (7.69±1.60 t/ha) and grain yield (2.6±0.53 t/ha). In a residual study, the highest grain yield (2.8±0.72 t/ha) was produced in the plot treated with 10 t/ha, and it also gave the highest pH, organic carbon, total nitrogen, and available P content. The compost at the rate of 10 t/ha can increase soil fertility and rice yield.


Author(s):  
A.A. Judge ◽  
R.N. Jensen ◽  
M.S. Sprosen ◽  
S.F. Ledgard ◽  
E.R. Thom ◽  
...  

Dry matter (DM) yield responses and field nitrogen (N) leaching losses were assessed following the application of 4 rates of N fertiliser to an Italian ryegrass (Lolium multiflorum) crop grown after maize. The trial was conducted on a free-draining Horotiu silt loam (typic orthic allophanic soil) at Dexcel's Scott Farm near Hamilton, New Zealand. The grass was direct dr illed into maize stubble on 13 April 2002. Small plots received a total of 0, 40, 100 or 160 kg N/ha as urea, split into 4 equal applications from May to July. Total DM production over 24 weeks for the 0, 40, 100 or 160 kg N/ha treatments was 2730, 3487, 4238 and 4840 kg DM/ha, respectively. Additional kg DM produced/kg N applied was 19, 15 and 13, respectively. The 'apparent' proportion of applied N removed in the herbage from all plots was 55- 60%. Herbage nitrate-N concentrations exceeded the commonly accepted critical level of 0.21% on the 160 kg N/ha treatment at the first harvest on 3 July 2002, when only half of each N rate had been applied. There were no significant treatment differences in leaching losses (range 17-34 kg N/ha). Italian ryegrass grown on a silt loam soil after maize showed an almost linear yield response to N fertiliser over the range 40-160 kg N/ha, without increased inorganic N leaching. Further work is necessary to confirm these results and to establish whether or not higher rates of N fertiliser can be used to increase winter dry matter yields from Italian ryegrass, without increasing N leaching losses. Keywords: annual ryegrass, dairy systems, double cropping, nitrogen leaching


2019 ◽  
Vol 70 (4) ◽  
pp. 295 ◽  
Author(s):  
Geoffrey Anderson ◽  
Richard Bell

Soil acidity, or more specifically aluminium (Al) toxicity, is a major soil limitation to growing wheat (Triticum aestivum L.) in the south of Western Australia (SWA). Application of calcium carbonate (lime) is used to correct Al toxicity by increasing soil pH and decreasing soluble soil Al3+. Soil testing using a 0.01 m calcium chloride (CaCl2) solution can measure both soil pH (pHCaCl2) and soil Al (AlCaCl2) for recommending rates of lime application. This study aimed to determine which combination of soil pHCaCl2 or soil AlCaCl2 and sampling depth best explains the wheat grain-yield increase (response) when lime is applied. A database of 31 historical lime experiments was compiled with wheat as the indicator crop. Wheat response to lime application was presented as relative yield percentage (grain yield for the no-lime treatment divided by the highest grain yield achieved for lime treatments × 100). Soil sampling depths were 0–10, 10–20 and 20–30 cm and various combinations of these depths. For evidence that lime application had altered soil pHCaCl2, we selected the change in the lowest pHCaCl2 value of the three soil layers to a depth of 30 cm as a result of the highest lime application (ΔpHmin). When ΔpHmin &lt;0.3, the lack of grain-yield response to lime suggested that insufficient lime had leached into the 10–30 cm soil layer to remove the soil Al limitation for these observations. Also, under high fallow-season rainfall (228 and 320 mm) and low growing-season rainfall (GSR) (&lt;140 mm), relative yield was lower for the measured level of soil AlCaCl2 than in the other observations. Hence, after excluding observations with ΔpHmin &lt;0.3 or GSR &lt;140 mm (n = 19), soil AlCaCl2 provided a better definition of the relationship between soil test and wheat response (r2 range 0.48–0.74) than did soil pHCaCl2 (highest r2 0.38). The critical value (defined at relative yield = 90%) ranged from 2.5 mg Al kg–1 (for soil Al calculated according to root distribution by depth within the 0–30 cm layer) to 4.5 mg Al kg–1 (calculated from the highest AlCaCl2 value from the three soil layers to 30 cm depth). We conclude that 0.01 m CaCl2 extractable Al in the 0–30 cm layer will give the more accurate definition of the relationship between soil test and wheat response in SWA.


Sign in / Sign up

Export Citation Format

Share Document