Response of chickpea (Cicer arietinum L.) varieties to time of sowing in Mediterranean-type environments of south-western Australia

2006 ◽  
Vol 46 (3) ◽  
pp. 395 ◽  
Author(s):  
K. L. Regan ◽  
K. H. M. Siddique ◽  
N. J. Brandon ◽  
M. Seymour ◽  
S. P. Loss

Chickpea has become an important grain legume crop in Australia over the last decade. New varieties with improved seed yield and quality are being developed in Australia with varied phenological and agronomic traits. This study examined the optimum time of sowing of several desi chickpea varieties (Dooen, T1587, Sona and Tyson) varying in phenology over a range of dryland Mediterranean-type environments in south-western Australia. Chickpea showed good adaptation, particularly in the northern grain belt of Western Australia where growing conditions are warmer than southern areas. Seed yields varied widely depending on the time of sowing, location and seasonal conditions. Mean seed yields greater than 1000 kg/ha and up to 2000 kg/ha were achieved, but in some cases seed yields were less than 800 kg/ha. In the northern region, seed yield was almost doubled by sowing in early-May (1625 kg/ha) compared with late-June (754 kg/ha). In contrast to this, seed yields were generally lower in the southern regions and greater from late-June sowings (865 kg/ha) compared to earlier mid-May sowings (610 kg/ha). Seed yields were not clearly increased by altering sowing time to match the phenology of the variety to the growing season rainfall and temperatures, except at the early sowing times (April and early-May) where Tyson out-yielded all other varieties. This is most likely due to the lack of photoperiod-responsive, long-duration varieties to match early sowing and low temperatures limiting vegetative and reproductive growth in all varieties, especially in southern areas. However, it is likely that early flowering varieties will show greater adaptation and yield performance in short growing seasons, while later flowering varieties will be better suited to longer growing seasons. The study found that there were significant differences in the optimum sowing time between northern, central and southern sites, based on differences in mean daily temperatures and length of the growing season. Generally, the greatest seed yields were produced by sowing between mid to late June at southern sites, and early May at central and northern sites.

1981 ◽  
Vol 32 (5) ◽  
pp. 783 ◽  
Author(s):  
WJ Collins

The effects of length of growing season and defoliation on seed yield and hard-seededness were examined in two strains of subterranean clover (Seaton Park, Midland B) grown in swards in the field. All plots were sown at the same time and the length of growing season was varied by altering the time of finish of the season (by withholding water). There were three length of growing season treatments: T1 (short), T2 (intermediate) and T3 (control). The defoliation treatments were D0, uncut (control), and D1, defoliated at weekly intervals until the commencement of flowering. Reducing the length of growing season drastically reduced seed yield. Thus when the growing season was only 3 weeks shorter than the control (i.e. T2 compared with T3), seed yields averaged over strains and defoliations were reduced by at least one half. With a further reduction of 2 weeks in the length of the season (T1) seed yields were only about one-third of those obtained in the control (T3). The reductions in seed yield were due to reductions in both the number of mature burrs produced and to a lesser extent in mean weight per seed. Although defoliation increased seed yield in all growing seasons, the effect when measured on a relative scale was greater in T2 than in either T1 or T3. But on an absolute scale the size of the response was greater in T2 and T3 than in T1. The rate of breakdown of hard-seededness was faster in Seaton Park than in Midland B, but it decreased in both strains with increasing length of growing season.


1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.


1999 ◽  
Vol 50 (3) ◽  
pp. 375 ◽  
Author(s):  
K. H. M. Siddique ◽  
S. P. Loss ◽  
K. L. Regan ◽  
R. L. Jettner

A range of cool season grain legume species have shown considerable potential for soils unsuitable for the production of narrow-leafed lupin (Lupinus angustifolius L.) at limited sites in the Mediterranean-type environments of south-western Australia. In this study the adaptation of these grain legume species was compared by measuring crop phenology, growth, and yield in field experiments at a total of 36 sites over 3 seasons, with the aim of identifying species with suitable adaptation and seed yield for specific environments. The grain legumes examined appeared to fall into 3 categories: (i) field pea (Pisum sativum L.), faba bean (Vicia faba L.), common vetch (Vicia sativa L.), and narbon bean (Vicia narbonensis L.) clearly had superior seed yield to the other species over a wide number of sites and years across south-western Australia (mean 1.0–2.3 t/ha); (ii) albus lupin (Lupinus albus L.), desi chickpea (Cicer arietinum L.), and Lathyrus cicera, L. sativus, and L. ochrus produced seed yields of 1–1.3 t/ha; and (iii) red lentil (Lens culinaris L.), bitter vetch (Vicia ervilia), and kabuli chickpea (Cicer arietinum L.) generally produced the lowest yields (0.6–1.0 t/ha). There were clear species × environment interactions. At low-yielding sites (<1.4 t/ha), field pea was the highest yielding species, while faba bean often produced the highest seed yields under more favourable conditions at high yielding sites. Lentil, bitter vetch, Lathyrus spp., and desi chickpea showed average response to increasing mean site yield. Soil pH and clay content and rainfall were the environmental factors identified as the most important in determining seed yields. Soil pH and clay content appeared to be especially important in the adaptation of lentil, narbon bean, bitter vetch, and kabuli chickpea, with these species performing best in soils with pH >6.0 and clay contents >15%. Seed yields were positively correlated with dry matter production at maturity across a number of sites (r2 = 0.40, P < 0.01). Future improvements in seed yield of these species are likely to come from management practices that increase dry matter production such as increased plant density and early sowing, and through the development of genotypes with greater tolerance to low winter temperatures, and more rapid phenology, canopy development, and dry matter production than existing commercial cultivars.


1993 ◽  
Vol 33 (7) ◽  
pp. 915 ◽  
Author(s):  
KHM Siddique ◽  
GH Walton ◽  
M Seymour

Field trials were conducted in 2 seasons at 13 sites on neutral to alkaline soils in Western Australia, to compare the growth and seed yield of 6 winter grain legume species: field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris Medik), narrow leaf lupin (Lupinus angustifolius L.), albus lupin (L. albus). In a dry year (1991), overall site mean seed yield was highest for field pea (1.35 t/ha), then faba bean (1.22 t/ha) and narrow leaf lupin (0.85 t/ha). Chickpea, lentil line ILL5728, and albus lupin produced an average seed yield of 0.64 t/ha. Rainfall in 1992 was above average and seed yields of all species except field pea were higher than in 1991. Heavy rainfall in winter and spring caused transient waterlogging at several sites, affecting growth and seed yield of most species. Faba bean responded positively to the increase in rainfall and produced exceptional seed yields of >4 t/ha at 3 sites. Mean seed yield was highest for faba bean, at 2.87 t/ha, then narrow leaf lupin (1.19 t/ha), chickpea (1.1 t/ha), and field pea (1.0 t/ha). Field pea performed poorly at several sites due to its susceptibility to transient waterlogging and black spot disease (caused by Mycosphaerella pinoides). Albus lupin and lentil line ILL5728 produced similar seed yields (0.78 t/ha). Lentil cvv. Laird (1991) and Kye (1992) had low seed yields due to poor adaptation. Seed yield differences between species at various locations were not simply related to any soil chemical parameters or to depth to clay. On a calcareous soil of pH(CaC12) 8 at Dongara, the growth of narrow leaf lupin was severely affected and the crop failed. Days to flowering varied between species; faba bean was earliest to flower (76 days), then field pea. Faba bean and field pea (particularly in 1991) generally produced the most dry matter, both early and at final harvest. The relationship between seed yield and rainfall was complicated by transient waterlogging and fungal disease (e.g. black spot in field pea) at many sites. Seed yield was significantly positively related to final dry matter production but not to harvest index.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


1970 ◽  
Vol 10 (42) ◽  
pp. 84 ◽  
Author(s):  
ML Poole ◽  
JW Gartrell

Ten annual Trifolium and Medicago cultivars were sown at low (1-6 lb an acre) and high (3-18 lb an acre) seeding rates with wheat crops in five trials in the south-eastern wheatbelt of Western Australia. Wheat and legume seed yields from these mixed stands were compared with stands of the same rates of wheat and legume sown alone. Sowing the legumes with the crop reduced wheat yields by from 7.4 bushels an acre (25 per cent) in one trial to 1.5 bushels an acre (5 per cent) in another. The evidence did not suggest which factors caused the different response. Legume seed production under the crop was severely reduced in all trials. In 30 of the 44 comparisons made it was reduced by more than 50 per cent, and in 13 cases by more than 75 per cent. In 9 cases the amount of seed set under the crop was less than 30 lb an acre. In most cases trebling the amount of legume seed sown under the crop greatly increased legume seed yield but caused only a small (less than one bushel per acre) further decrease in wheat yield.


2003 ◽  
Vol 83 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Y. T. Gan ◽  
P. R. Miller ◽  
B. G. McConkey ◽  
R. P. Zentner ◽  
P. H. Liu ◽  
...  

Chickpea (Cicer arietinum L.), an annual grain legume, is being broadly included in cereal-based cropping systems throughout the semiarid Canadian prairies, but information on optimum plant population density (PPD) has not been developed for this region. This study, which was conducted from 1998 to 2000 in southwestern Saskatchewan, determined the effect of PPD on field emergence, seed yield and quality, and harvestability of kabuli and desi chickpea compared with dry pea (Pisum sativum L.). Seed yields of all legumes increased with increasing PPD when the crops were grown on conventional summerfallow. The PPD that produced the highest seed yields ranged from 40 to 45 plants m-2 for kabuli chickpea, from 45 to 50 plants m-2 for desi chickpea, and from 75 to 80 plants m-2 for dry pea. When the legumes were grown on wheat stubble, the PPD that gained optimum seed yield ranged from 35 to 40 plants m-2 for kabuli chickpea, from 40 to 45 plants m-2 for desi chickpea, and from 65 to 70 plants m-2 for dry pea. The proportion of large-sized (>9-mm diameter) seed in the harvested seed was >70% when the kabuli chickpea was grown on summerfallow regardless of PPD, whereas the large-seed proportion decreased with increasing PPD when the crop was grown on wheat stubble. Increases in PPD advanced plant maturity by 1.5 to 3.0 d and increased the height of the lowest pods from the soil surface by 1.4 to 2.0 cm (or 5 to 10%), with desi chickpea receiving the greatest benefits from increased PPD. The percentage of plants established from viable seeds per unit area decreased substantially as PPD increased, with kabuli chickpea emergence decreasing from 90% at PPD = 20 plants m-2 to 72% at PPD = 50 plants m-2, from 81 to 69% for desi type, and from 83 to 59% for dry pea . The reason for the low field emergence with increased PPD is unknown, but methods which lead to improved field emergence represent a great opportunity to increase seed yield and reduce production costs for both chickpea and dry pea in this semiarid region. Key words: seed size, Cicer arietinum, Pisum sativum, seeding rate, summerfallow


1990 ◽  
Vol 41 (5) ◽  
pp. 853 ◽  
Author(s):  
RJ French

Field pea yields in three sowing-time experiments in 1985, and two experiments in 1986, were split into the following components: pods m-2, seeds pod-1 and average seed size. In both years pods m-2 was the component most strongly correlated with yield, but the others were also positively correlated with yield. Multivariate analysis of variance showed that pods m-2 contributed more than the other components to the site and sowing-time main effects in both years. Seeds pod-1 made no contribution in either year, but average seed size contributed to the site main effect in 1985 and to the sowing time and cultivar main effects in 1986. These results identify pods m-2 as the most responsive component to environmental effects on field pea yield. Pods m-2 was split into stems m-2 and pods stem-1, or into the rate of pod formation and the duration of pod formation. Variation in both stems m-2 and pods stem-1 contributed to differences in pods m-2 in the 1986 experiments. In a comparison of two Derrimut pea crops grown at Merredin in 1984 and 1985, the duration of pod formation and the rate of pod formation both varied. Variation in the rate of pod formation was due to differences in stems m-2 rather than in rates of pod formation stem-1. Pods formed early in the reproductive phase contributed much more to total seed yield than those formed later. This was due to later-formed pods containing fewer seeds and being more likely than early-formed pods to abscise before reaching maturity. The proportion of total seed yield carried on the first three reproductive nodes varied from 64.3% to 94.2%. This proportion was higher in harsher environments. It is suggested that in short growing-season environments increased pod formation rates are desirable to allow compression of the pod formation period, so that fewer pods will be formed late in the reproductive phase when the environment is most limiting.


1988 ◽  
Vol 111 (2) ◽  
pp. 295-301 ◽  
Author(s):  
A. M. Abd El Moneim ◽  
P. S. Cocks ◽  
Y. Swedan

SummaryWith the current high prices for livestock, forage legumes are increasingly attractive to farmers in west Asia. There has been very little genetic improvement of the main species, of which three vetches, Vicia saliva (common vetch), V. villosa subsp. dasycarpa (woollypod vetch), and V. narbonensis (Narbon vetch), show promise. As a first step in genetic improvement 23 genotypes of common vetch and one each of woollypod vetch and Narbon vetch were grown at four sites in Syria and one in Lebanon over three seasons. Since local climatic conditions were considered to be of considerable importance, each site in each year was treated as a separate environment, to give 15 environments in all. genotype × environment (G × E) interactions were analysed using linear regression.There was considerable variation in herbage and seed yields within both genotypes and environments, and G × E interactions were highly significant. In the case of herbage yield good environments could be defined as those receiving high rainfall and low incidence of frost. Several genotypes appeared to possess wide adaptation, in terms of both yield and stability. Climate, except for late spring rains, had little effect on seed yield, nor were any of the genotypes widely adapted. However, in the broad sense heritability was much higher for seed than for herbage yield.There is a need to define good and bad environments for seed yield. Based on observations during the study it is likely that good environments for Narbon vetch are those where broomrape (Orobanche crenata) is absent, while root-knot nematode (Meloidogyne artiella) may affect seed yield of common vetch. In view of its high seed yield the possible role of Narbon vetch as a grain legume is briefly discussed.


2013 ◽  
Vol 64 (9) ◽  
pp. 914 ◽  
Author(s):  
Kedar Nath Adhikari ◽  
Geoff Thomas ◽  
Dean Diepeveen ◽  
Richard Trethowan

White lupin (Lupinus albus L.) is an important grain legume crop in Australia. The anthracnose incursion in the mid-1990s wiped out the white lupin industry in Western Australia (WA). Since then, incorporation of anthracnose resistance has been a major focus in white lupin breeding. After a series of experiments and targeted breeding in WA, high-yielding anthracnose-resistant genotypes were developed. One of these lines, Amira, was released in 2012 as a replacement for the then-benchmark variety Andromeda. Amira is high-yielding and early-maturing and it has substantially improved resistance to anthracnose compared with Andromeda. Its yield and grain quality are similar to Kiev Mutant and it will be suitable for growing in parts of the Northern Agricultural Region of WA where anthracnose risk is moderate to low. With the adoption of this new variety, reliable production of white lupin can recommence in WA. The growing season in WA is characterised by terminal drought, and early flowering is as important as anthracnose resistance. However, combining these traits was difficult and their combination was not achieved at a desired level in earlier work. The incorporation of the early-flowering trait from a different genetic source from France demonstrated that it is possible to combine these traits at an appropriate level. There was no genetic linkage between the two traits, and consequently, new genotypes with earlier phenology and higher levels of resistance than Amira were developed. The combination of early flowering and anthracnose resistance represents a breakthrough that will significantly improve the adaptation and profitability of white lupin production in WA.


Sign in / Sign up

Export Citation Format

Share Document