Climate change and Australian livestock systems: impacts, research and policy issues

2008 ◽  
Vol 48 (7) ◽  
pp. 780 ◽  
Author(s):  
S. M. Howden ◽  
S. J. Crimp ◽  
C. J. Stokes

The recent changes in Australia’s climate, the likelihood of further changes over the next decades to centuries, and the likely significant impacts of these changes on the Australian livestock industries, provide increasing urgency to explore adaptation options more effectively. Climate and atmospheric changes are likely to impact on the quantity and reliability of forage production; forage quality; thermal stress on livestock; water demands for both animal needs and for growing forage; pest, disease and weed challenges; land degradation processes; and various social and economic aspects including trade. Potential adaptation options are available for moderate climate changes, with these often being variations of existing climate risk management strategies. However, to date there are few Australian examples where these adaptations have been assessed systematically on any scale (e.g. enterprise, regional, whole of industry or national). Nor have many studies been undertaken in a way that (i) effectively harness industry knowledge, (ii) undertake climate change analyses in the framework of existing operational systems, or (iii) assess climate change in the context of other socioeconomic or technical changes. It is likely that there are limits to the effectiveness of existing adaptations under more severe climate changes. In such cases more systemic changes in resource allocation need considering, such as targeted diversification of production systems and livelihoods. Dealing with the many barriers to effective adaptation will require ‘mainstreaming’ climate change into policies covering a range of scales, responsibilities and issues. This mainstreaming will facilitate the development of comprehensive, dynamic and long lasting policy solutions. The integrative nature of climate change problems requires science to include integrative elements in the search for solutions: a willingness to apply integrated rather than disciplinary science and a strengthening of the interface with decision-makers.

1985 ◽  
Vol 17 (1) ◽  
pp. 117-130 ◽  
Author(s):  
Hamid Falatoonzadeh ◽  
J. Richard Conner ◽  
Rulon D. Pope

AbstractThe most useful and practical strategy available for reducing variability of net farm income is ascertained. Of the many risk management tools presently available, five of the most commonly used are simultaneously incorporated in an empirically tested model. Quadratic programming provides the basis for decisionmaking in risk management wherein expected utility is assumed to be a function of the mean and variance of net income. Results demonstrate that farmers can reduce production and price risks when a combination strategy including a diversified crop production plan and participation in the futures market and the Federal Crop Insurance Program (FCIP) is implemented.


Author(s):  
Brenden Jongman ◽  
Hessel C. Winsemius ◽  
Stuart A. Fraser ◽  
Sanne Muis ◽  
Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Donatella Porrini

<p>Climate change is likely to cause extreme weather events in the world with the consequence of an increased number of natural catastrophes. The expected damages pose serious challenges to governments in terms of policy choice and a crucial point is to define the role can be played by insurance sector, particularly as a tool to reduce potential damage, as well as to stimulate mitigation. Scientific research and good knowledge of risk are necessary in guiding policy decisions to manage the risks deriving from climate change. In this direction, the author analyses the fact that risks connected with climate change and the potential contribution of the insurance sector need to be analysed by scientific research in order to plan the correct risk management strategies in the future.</p>


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


2018 ◽  
Vol 16 (6) ◽  
pp. 980-990 ◽  
Author(s):  
Luis Fernando Perez-Mercado ◽  
Cecilia Lalander ◽  
Abraham Joel ◽  
Jakob Ottoson ◽  
Mercedes Iriarte ◽  
...  

Abstract In dry areas, the need for irrigation to ensure agricultural production determines the use of all available water sources. However, the water sources used for irrigation are often contaminated by untreated or minimally treated wastewater. Microbial risks from reusing wastewater for vegetable irrigation can be addressed by installing environmental barriers that pathogens must cross to reach humans in the reuse system. Knowledge of pathogen flows inside the system and pathogen removal potential is the first step towards devising a risk management strategy. This study assessed microbe prevalence in farming systems in the Bolivian highlands that use wastewater-polluted sources for irrigation of lettuce. Samples of soil, lettuce and different water sources used in the farming systems were taken during one crop season and concentrations of coliphages, Escherichia coli and helminth eggs were measured. The results showed high spread of these microorganisms throughout the whole system. There was a significant correlation between microbial quality of water and of the harvested produce for several microorganisms. The microbial prevalence in protected shallow wells was found to be significantly lower than in other water sources. These findings can help formulate feasible risk management strategies in contexts where conventional technologies for microbial removal are not possible.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2643
Author(s):  
Flavia Simona Cosoveanu ◽  
Jean-Marie Buijs ◽  
Marloes Bakker ◽  
Teun Terpstra

Diversification of flood risk management strategies (FRMS) in response to climate change relies on the adaptive capacities of institutions. Although adaptive capacities enable flexibility and adjustment, more empirical research is needed to better grasp the role of adaptive capacities to accommodate expected climate change effects. This paper presents an analytical framework based on the Adaptive Capacity Wheel (ACW) and Triple-loop Learning. The framework is applied to evaluate the adaptive capacities that were missing, employed, and developed throughout the ‘Alblasserwaard-Vijfheerenlanden’ (The Netherlands) and the ‘Wesermarsch’ (Germany) pilot projects. Evaluations were performed using questionnaires, interviews, and focus groups. From the 22 capacities of ACW, three capacities were identified important for diversifying the current FRMS; the capacity to develop a greater variety of solutions, continuous access to information about diversified FRMS, and collaborative leadership. Hardly any capacities related to ‘learning’ and ‘governance’ were mentioned by the stakeholders. From a further reflection on the data, we inferred that the pilot projects performed single-loop learning (incremental learning: ‘are we doing what we do right?’), rather than double-loop learning (reframing: ‘are we doing the right things?’). As the development of the framework is part of ongoing research, some directions for improvement are highlighted.


Author(s):  
W. J. Wouter Botzen

Increasing natural disaster losses in the past decades and expectations that this trend will accelerate under climate change motivated the development of a branch of literature on the economics of natural disaster insurance. A starting point for assessing the implications of climate change for insurance and developing risk management strategies is understanding the factors underlying historical loss trends and the way that future risks will develop. Most studies have pointed toward socioeconomic developments as the main cause of historical trends in natural disaster risks. Moreover, evidence reveals that climate change has been a contributing factor, which is expected to grow in importance in the future. Several supply and demand side obstacles may prevent natural disaster insurance from optimally fulfilling its desirable function of offering financial protection at affordable premiums. Climate change is expected to further hamper the insurability of natural disaster risks, unless insurers and governments proactively respond to climate change, for example by linking insurance coverage with risk reduction activities. A branch of literature has developed about how the functioning of insurance should be improved to cope with climate change. This includes industry-level responses, reforms of insurance market structures, such as public–private natural disaster insurance provision, and recommendations for addressing behavioral biases in insurance demand and for stimulating risk reduction. In view of the rising economic losses of natural disasters, this field of study is likely to remain an active one.


Sign in / Sign up

Export Citation Format

Share Document