Effect of seeding rate and nitrogen fertilizer on production of autumn sown rape (Brassica napus) on the Central Tablelands of New South Wales

1969 ◽  
Vol 9 (38) ◽  
pp. 350 ◽  
Author(s):  
D Gramshaw ◽  
FC Crofts

Two factorial field experiments, comparing the effects of a range of seeding rates and levels of nitrogen fertilizer on the winter and early spring yield of rape (Brassica napus CV. Dwarf Essex) sown in early autumn, were conducted in two successive years near Orange (33.2�S, 149.1�E), New South Wales. Average annual rainfall is 34 inches and winter mean temperatures range from 42-45�F. Seeding rates of from 9 to 15 lb an acre and nitrogen fertilizer at 80 lb N an acre at seeding gave near optimum winter and early spring yields. This combination gave a three-fold increase in yield over sowings at 3 lb an acre without nitrogen fertilizer. The responses to seeding rate and nitrogen were independent in winter, but these factors interacted to affect yield in early spring. The dry matter content of rape varied between 11.5 and 19.3 per cent and was generally unaffected by seeding rate, but tended to decrease slightly with increased nitrogen level. Nitrogen percentage, which fluctuated between 2.18 and 3.61, was little affected by increased seeding rate and generally showed a small increase with increasing levels of applied nitrogen.

1963 ◽  
Vol 3 (9) ◽  
pp. 114 ◽  
Author(s):  
JD Colwell

The effects of the different sowing rates of 20, 40, and 60 lb of seed an acre on the yield, bushel weight, composition, and response to fertilizers, of wheat grown on soils of high fertility has been studied in seven field experiments in the wheat-belt of southern New South Wales. Seasonal conditions ranged from drought to lush growing conditions and in addition one experiment was irrigated to reduce the effects of moisture stress on plant growth. Yields ranged from 10 to 70 bushels of wheat an acre and fertilizer treatments gave both positive and negative effects. For the wide range of growth conditions, variation in seeding rate had only small and non-significant effects on grain yields, with the exception of the irrigated experiment where a consistent trend indicated the need for higher seeding rates for maximum yield. Effects of the seeding rates on grain size and composition and fertilizer response, were negligible. Losses in potential grain yield, caused by the exhaustion of soil moisture reserves by excessive vegetative growth of high fertility soils before grain development has been completed, does not seem to be reduced appreciably by the use of low seeding rates.


2003 ◽  
Vol 30 (1) ◽  
pp. 89 ◽  
Author(s):  
Fred Ford ◽  
Andrew Cockburn ◽  
Linda Broome

The smoky mouse, Pseudomys fumeus, is an endangered rodent for which ecological information is lacking across much of its range. This paper provides the first detailed study of the local diet and habitat preference of P. fumeus since 1980, conducted on the recently discovered Nullica population in New South Wales. Diet and trap-revealed movements were examined in conjunction with 18 characteristics of habitat to determine the factors influencing habitat choice. Multiple logistic regression of habitat variables and capture locations revealed a floristically determined preference for heath habitat characterised by Epacris impressa, Monotoca scoparia, Leptospermum trinervium, Xanthorrhoea spp. and a variety of legumes. Hypogeal fungi and seeds were the most common food items in the diet of P. fumeus. Fungi were most abundant in winter diet, while seeds and fruit became dominant in late spring and summer. The spring and summer preference for ridge-top heath habitats observed in this study is probably the result of this dietary preference. Resident females constituted 71% of the population in early spring. However, there was a severe decline in numbers of female mice during early spring, and resident males also disappeared from the population. Causes of the decline were unclear. Five of eleven males captured during this study were transient, while no transient females were caught. The sudden decline in the study population, combined with the patchy distribution of suitable habitat and high level of male transience, suggests that P. fumeus form a metapopulation in the Nullica region.


2011 ◽  
Vol 62 (12) ◽  
pp. 1067 ◽  
Author(s):  
L. G. Gaynor ◽  
R. J. Lawn ◽  
A. T. James

The response of irrigated soybean to sowing date and to plant population was evaluated in field experiments over three years at Leeton, in the Murrumbidgee Irrigation Area (MIA) in southern New South Wales. The aim was to explore the options for later sowings to improve the flexibility for growing soybean in double-cropping rotations with a winter cereal. The experiments were grown on 1.83-m-wide raised soil beds, with 2, 4, or 6 rows per bed (years 1 and 2) or 2 rows per bed only (year 3). Plant population, which was manipulated by changing either the number of rows per bed (years 1 and 2) or the within-row plant spacing (year 3), ranged from 15 to 60 plants/m2 depending on the experiment. Two sowings dates, late November and late December, were compared in years 1 and 3, while in year 2, sowings in early and late January were also included. Three genotypes (early, medium, and late maturity) were grown in years 1 and 2, and four medium-maturing genotypes were grown in year 3. In general, machine-harvested seed yields were highest in the November sowings, and declined as sowing was delayed. Physiological analyses suggested two underlying causes for the yield decline as sowing date was delayed. First and most importantly, the later sown crops flowered sooner after sowing, shortening crop duration and reducing total dry matter (TDM) production. Second, in the late January sowings of the medium- and late-maturing genotypes, harvest index (HI) declined as maturity was pushed later into autumn, exposing the crops to cooler temperatures during pod filling. Attempts to offset the decline in TDM production as sowing was delayed by using higher plant populations were unsuccessful, in part because HI decreased, apparently due to greater severity of lodging. The studies indicated that, in the near term, the yield potential of current indeterminate cultivars at the late December sowing date is adequate, given appropriate management, for commercially viable double-cropping of soybean in the MIA. In the longer term, it is suggested that development of earlier maturing, lodging-resistant genotypes that retain high HI at high sowing density may allow sowing to be delayed to early January.


1992 ◽  
Vol 32 (4) ◽  
pp. 447 ◽  
Author(s):  
G Sweeney ◽  
RS Jessop ◽  
H Harris

The yields and yield structure of cultivars of triticales and bread wheats (with a range of phasic development patterns in both species) were compared in 2 field experiments at Narrabri in northern New South Wales. The experiments were performed on a grey cracking clay soil with irrigation to prevent severe moisture stress. Triticales, both early and midseason types, appeared to have reached yield parity with well-adapted wheat varieties. Meaned over the 2 experiments and all sowings, the triticales yields were 19% greater than the bread wheats. Triticales were generally superior to wheat in all components of yield of the spike (1000-grain weight, grain number/spikelet and spikelet number/spike), whilst the wheats produced more spikes per unit area. The triticales also had higher harvest indices than the wheats. The results are discussed in relation to the overall adaptability of triticale for Australian conditions.


1988 ◽  
Vol 78 (3) ◽  
pp. 493-509 ◽  
Author(s):  
Garrick McDonald ◽  
Roger A. Farrow

AbstractAerial sampling for Nysius vinitor Bergroth was undertaken in the surface and upper air, at altitudes of 2 and 100-300 m, respectively, at Trangie in central New South Wales and at Corny Point, Yorke Peninsula, South Australia. Insects were sampled for 15 periods, each of 3-11 days, between October 1979 and February 1984, covering all months except January, March and May. N. vinitor was one of the most abundant insects caught in the upper air during the day and night (mean density of 652/106 m3), while the congeneric N. clevelandensis Evans was rarely caught at any time. N. vinitor was caught in all months sampled except for the winter months of July and August, and the largest daily catches occurred in September. Females were generally less common than males, although the relative incidence in the upper air catches frequently increased significantly from day to night. Fewer mature females were caught in the upper air (0-16·8%) than at the surface (0-48·4%). Densities were generally much greater in the surface air than in the upper air, although during the major flights of spring, there was less than a two-fold difference, indicating increased migratory activity. Migration occurred in a range of synoptic conditions resulting in the displacement of individuals in a variety of directions and distances depending on synoptic flow at the time of flight. Major migrations occurred at night, following dusk take-off, in disturbed weather associated with prefrontal airflows. These resulted in net southward displacements of ca 200-300 km depending on flight duration. It is suggested that major immigration flights into central-western New South Wales and regions to the south regularly occur in early spring (September-October) and probably arise from breeding areas in subtropical latitudes.


1967 ◽  
Vol 7 (27) ◽  
pp. 380
Author(s):  
JB Sumeghy ◽  
HC Kirton

To test the potential suitability of ten tomato varieties in the Murrumbidgee Irrigation Area of New South Wales to mechanical harvesting, the yields from 'once-over' harvests were compared with the yields from a harvest consisting of four pickings at weekly intervals. In a second experiment the effect of plant spacing, time of harvest, and side-dressing with nitrogen fertilizer were studied for the most promising varieties from the first experiment. The varieties Roma 884, VF145-22-8, and VF145 held their crops for prolonged periods without deterioration and so showed potential for mechanical harvesting. High planting density gave the highest yields from a single picking, and later picking and nitrogen side-dressing also increased yield.


1974 ◽  
Vol 14 (71) ◽  
pp. 790 ◽  
Author(s):  
JV Lovett ◽  
EM Matheson

In field experiments conducted over three years at Armidale, New South Wales, the total winter forage production by barley, oats, wheat and rye was similar. However, barley and rye tended to outyield wheat and oats at early harvests, the reverse applying at late harvests. It is suggested that these characteristics of the cereals could be exploited to meet specific seasonal requirements for dry matter production more effectively than is possible with a single species. Response to high seeding rates in forage production was similar in all cereals and was confined to a late sowing. Significant differences in in vitro digestibility over the winter period were recorded and differences were also apparent in subsequent grain yield.


1974 ◽  
Vol 14 (67) ◽  
pp. 231 ◽  
Author(s):  
OR Southwood ◽  
F Mengersen ◽  
PJ Milham

The effect of three rates of nitrogen (22.4, 44.8 and 89.6 kgNha-1 as anhydrous ammonia) and three seeding rates (67.3, 100.9, and 134.5 kg ha-1) on forage and grain production of two oat cultivars and on herbage nitrate-nitrogen concentration, was assessed at three sites in the southern New South Wales wheat belt. When oats were sown after two or three consecutive wheat crops nitrogen at 22.4 kg ha-1 was optimal for both forage and grain production. Herbage growth was best at the highest seeding rate (134.5 kg ha-1) but grain production was not influenced by seeding rate. Herbage growth of the oat cultivars Cooba and Coolabah was similar, but grain yields were higher from the latter. Herbage nitrate nitrogen increased linearly with nitrogen fertilizer application, levels that could be toxic to animals occurring in June. Cautious grazing management may be required during this period.


1992 ◽  
Vol 32 (4) ◽  
pp. 465 ◽  
Author(s):  
AD Doyle ◽  
RW Kingston

The effect of sowing rate (10-110 kg/ha) on the grain yield of barley (Hordeum vulgare L.) was determined from a total of 20 field experiments conducted in northern New South Wales from 1983 to 1986. Effects of sowing rate on kernel weight and grain protein percentage were also determined from 12 experiments conducted in 1985 and 1986. Two barley varieties were tested each year. In all years fallow plus winter rainfall was equal to or greater than average. Grain yield increased with higher sowing rates in most experiments, with the response curve reaching a plateau above 60-70 kg/ha. For 13 of the 40 variety x year combinations, grain yield fell at the highest sowing rates. Only in an experiment where lodging increased substantially with higher sowing rates was there a reduction in yield at a sowing rate of 60 kg/ha. The average sowing rate for which 5 kg grain was produced per kg of seed sown was 63 kg/ha. Grain protein percentage usually fell, and kernel weight invariably fell, with increasing sowing rate. Increasing sowing rates from the normal commercial rate of 35 kg/ha to a rate of 60 kg/ha typically increased grain yields by 100-400 kg/ha, decreased kernel weight by 0.4-2.0 mg, and decreased grain protein by up to 0.5 percentage points. In no case was the grain weight reduced to below malting specifications. It was concluded that sowing rates for barley in northern New South Wales should be increased to about 60 kg/ha.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


Sign in / Sign up

Export Citation Format

Share Document