Effects of initial clover seeding rate and length of ley on pasture production, soil nitrogen and crop yields in a ley farming system

1976 ◽  
Vol 16 (81) ◽  
pp. 484 ◽  
Author(s):  
ER Watson ◽  
P Lapins ◽  
RJW Barron

Several factors relating to the use of subterranean clover (Trifolium subterraneum) in a ley farming system were studied at Kojonup in the south-west of Western Australia viz; the effect of seeding rates of clover on the botanical composition and herbage production of a grazed pasture over five years; the build-up of soil nitrogen over this period, and the effect of 5, 8 and 11 years of clover on wheat yield and on subsequent regeneration of the pasture. In the final year (year 12) the effects of lime on mineralization of soil nitrogen and on crop yields were also studied. Seeding rates of clover in excess of 6 kg ha-1 affected botanical composition in the first year, and yield of pasture in the first two years only. Build-up of soil nitrogen over the first five years (when all plots were grazed) was significantly greater (P < 0.05) where clover had been sown at the higher rates (< 6 kg ha-1) but this did not result in increased wheat yields at the end of this period. In the 12th year, when all plots were cropped, there were no significant differences in grain yield between treatments cropped for the first time (after 11 years of clover) and those cropped either once or twice in the preceding six years. Cropping reduced pasture production in the early part of the post crop year but the proportion of clover in the pasture increased. The application of lime (in year 12) resulted in a significant increase in grain, and straw yields and nitrogen uptake on all treatments. The results suggest that crop yields can be sustained in short term rotations provided there is sufficient clover present in the pasture phase.


1999 ◽  
Vol 50 (6) ◽  
pp. 1073 ◽  
Author(s):  
A. Loi ◽  
P. S. Cocks ◽  
J. G. Howieson ◽  
S. J. Carr

Experiments measuring seed bank size, hardseededness, and seed softening of biserrula (Biserrula pelecinus L.) were conducted at Merredin and Perth in Western Australia. At Merredin, a mixture of 2 biserrula accessions was grazed, shallow cultivated, or left uncultivated and ungrazed. Seed bank size, seedling regeneration, and seed softening were measured over 2 years. At Perth, softening of biserrula, yellow serradella, and subterranean clover seeds grown at 2 sites (Binnu and Northam) was compared on the soil surface and after burial at 2 and 10 cm over a period of 2 years. Seed bank size of biserrula at Merredin ranged from 14000 to 17500 seeds/m2. Regeneration was greater in the second year (800–1700 seedlings/m2) than in the first year (40–600 seedlings/m2). In both years the shallow cultivated treatment recorded the highest number of seedlings. About 90% of biserrula and serradella seed remained hard after 2 years on the soil surface, compared with only about 10% of subterranean clover. Serradella softened more rapidly when buried 2 cm below the soil surface (8–12% hard) than it did on the soil surface (84–92% hard) (P<0.05). In contrast, the softening of subterranean clover decreased with increasing depth. Biserrula was intermediate, although it too softened most rapidly at 2 cm (78–95% hard compared with 82–97% on the surface) (P<0.05). Rate of seed softening in all species decreased with increasing depth of burial below 2 cm. Of the 4 accessions of biserrula, an accession from Greece (83% hard after 2 years exposure) was significantly softer than the other accessions. The results indicate that biserrula is very hardseeded, although there is sufficient variation in hardseededness for the selection of somewhat softer lines. Its pattern of softening suggests that biserrula may be successful in the ley farming system (crop/pasture rotations) of southern Australia.



1955 ◽  
Vol 6 (4) ◽  
pp. 553 ◽  
Author(s):  
RC Rossiter ◽  
PG Ozanne

A 2-year field experiment is described, in which an annual-type pasture was grown on a soil of lateritic origin with various initial rates of rock phosphate and superphosphate. The soil was acutely deficient in plant-available phosphorus at the outset. Application of superphosphate led to the expected increases in total pasture production, but rock phosphate also gave substantial yield increases, even during the first season. Differential species effects were noted; subterranean clover (Trifolium subterraneum L.) and cape-weed (Cryptostemma calendula Druce) responded about equally to superphosphate, but the clover responded to rock phosphate to a greater extent than did cape-weed. Both relative efficiency for total plant growth and percentage utilization of applied phosphorus were much higher with the soluble phosphatic fertilizer than with rock phosphate, especially in the first year. However, phosphorus recovery from rock phosphate was as high in the second year as in the first, whereas there was a marked decrease in the second year from superphosphate.



2003 ◽  
Vol 43 (10) ◽  
pp. 1221 ◽  
Author(s):  
M. D. A. Bolland ◽  
J. S. Yeates ◽  
M. F. Clarke

The dry herbage yield increase (response) of subterranean clover (Trifolium subterraneum L.)-based pasture (>85% clover) to applications of different sources of sulfur (S) was compared in 7 field experiments on very sandy soils in the > 650 mm annual average rainfall areas of south-western Australia where S deficiency of clover is common when pastures grow rapidly during spring (August–November). The sources compared were single superphosphate, finely grained and coarsely grained gypsum from deposits in south-western Australia, and elemental S. All sources were broadcast (topdressed) once only onto each plot, 3 weeks after pasture emerged at the start of the first growing season. In each subsequent year, fresh fertiliser-S as single superphosphate was applied 3 weeks after pasture emerged to nil-S plots previously not treated with S since the start of the experiment. This was to determine the residual value of sources applied at the start of the experiment in each subsequent year relative to superphosphate freshly-applied in each subsequent year. In addition, superphosphate was also applied 6, 12 and 16 weeks after emergence of pasture in each year, using nil-S plots not previously treated with S since the start of the experiment. Pasture responses to applied S are usually larger after mid-August, so applying S later may match plant demand increasing the effectiveness of S for pasture production and may also reduce leaching losses of the applied S.At the same site, yield increases to applied S varied greatly, from 0 to 300%, at different harvests in the same or different years. These variations in yield responses to applied S are attributed to the net effect of mineralisation of different amounts of S from soil organic matter, dissolution of S from fertilisers, and different amounts of leaching losses of S from soil by rainfall. Within each year at each site, yield increases were mostly larger in spring (September–November) than in autumn (June–August). In the year of application, single superphosphate was equally or more effective than the other sources. In years when large responses to S occurred, applying single superphosphate later in the year was more effective than applying single superphosphate 3 weeks after pasture emerged (standard practice), so within each year the most recently applied single superphosphate treatment was the most effective S source. All sources generally had negligible residual value, so S needed to be applied each year to ensure S deficiency did not reduce pasture production.



1973 ◽  
Vol 13 (64) ◽  
pp. 556
Author(s):  
DW Barrett ◽  
GW Arnold ◽  
NA Campbell

Pastures containing subterranean clover (Trifolium subterraneum) and either Vulpia spp. or Bromus rigidus as the other major species were sprayed at 0, 0.07, 0.14 and 0.21 kg a.i. ha-1 of paraquat ion between June and early October in Western Australia. Spraying removed the grasses and produced pastures containing up to 95 per cent clover. Mid-winter applications were more effective in increasing clover content than those made in spring. These changes in botanical composition were evident in the year following spraying, but were less marked. Yields of dry matter were reduced by paraquat, especially 'in the period immediately following spraying. These losses tended to decline as the growing season progressed, but at the close they were still evident on the Bromus rigidus pasture sprayed in July. Yields at the end of the subsequent season were similar on all treatments. Paraquat applied in mid-August at 0.14 kg a.i. ha-1 to both pastures produced the greatest change in botanical composition with the minimum loss of yield. The concentrations of nitrogen, phosphorus, calcium and magnesium were higher in mature herbage on paraquat treatments. Total yields of nutrients were similar between treatments because of reduced dry matter yield.



1968 ◽  
Vol 8 (35) ◽  
pp. 702 ◽  
Author(s):  
DF Smith

Mixed swards of barley grass (Hordeum leporinum) and subterranean clover (Trifolium subterraneum) of two densities were grown at two levels of nitrogen. Growth was started at two different times mid- April and mid-May-and at each time half the plots were subjected to moisture stress. The swards were harvested after nine weeks of growth. The survival of clover plants was reduced by an early start, moisture stress and nitrogen addition : much more so than barley grass. The root : shoot ratios of both species were calculated ; both showed some sensitivity to the time of break and moisture stress, and the grass was also affected by the other two factors. Total sward production and the ratios of clover to grass varied widely Grass daminance was favoured by moisture stress or a late break, and both of these factors tended to override the effect of higher soil nitrogen in determining clover-grass balance. Total sward production more dependent on density than any other factor, especially with the later start. Higher nitrogen was effective in boosting production only if the break was early and there was no moisture stress.



2006 ◽  
Vol 46 (8) ◽  
pp. 1023 ◽  
Author(s):  
E. C. Wolfe ◽  
J. A. Paul ◽  
P. D. Cregan

The purposes of this study were to evaluate subterranean clover-based leys on farms and in experiments using several pasture parameters, and to assess the impact of winter cleaning on the productivity and botanical composition of clover swards. Annual pastures were monitored on a group of 5 farms in the Wagga district and compared with an experimental subterranean clover (Trifolium subterraneum L.) pasture. The major problem in the farm paddocks was a lack of legume biomass due to poor legume densities, a consequence of the use of the soft-seeded cultivar Woogenellup and a high content of grassy weeds. The farmers in the group were unaware of the tools, parameters and benchmarks for making quantitative pasture comparisons. In 2 experiments, a range of subterranean clover swards were generated through the use of cultivars, seeding rate and winter cleaning treatments, grazed at 15 sheep/ha and monitored for 3 years. Appropriate benchmark values for the seed pool of subterranean clover were 300–350 kg/ha in winter and 600–700 kg/ha in summer. On the basis of both winter production, a function of May seedling density (target >1000 seedlings/m2) and spring production, which depended on the cultivar maturity, Junee was superior at Wagga to either Dalkeith (earlier maturing) or Woogenellup (softer seeded). Winter cleaning, using selective herbicides (fluazifop, simazine) to remove grasses and weeds, was advantageous in achieving a high content (>90%) and productivity of subterranean clover, provided that the legume content of the pasture was at least 28%, or >20% of total ground area before herbicide application in winter. In winter-cleaned swards, legume growth increased by up to 80%, legume biomass was improved by up to 46% and legume content increased from <50 to >95%. The main disadvantages of winter cleaning were increased areas of bare ground and reduced total biomass for several weeks after herbicide application, and the rapid development of ryegrass that was resistant to at least 1 of the herbicides used. The strategic use of observations to monitor the performance of pastures and their response to management is discussed.



2001 ◽  
Vol 52 (2) ◽  
pp. 295 ◽  
Author(s):  
R. A. Latta ◽  
L. J. Blacklow ◽  
P. S. Cocks

Two field experiments in the Great Southern region of Western Australia compared the soil water content under lucerne (Medicago sativa) with subterranean clover (Trifolium subterranean) and annual medic (Medicago polymorpha) over a 2-year period. Lucerne depleted soil water (10–150 cm) between 40 and 100 mm at Borden and 20 and 60 mm at Pingrup compared with annual pasture. There was also less stored soil water after wheat (Triticum aestivum) and canola (Brassica napus) phases which followed the lucerne and annual pasture treatments, 30 and 48 mm after wheat, 49 and 29 mm after canola at Borden and Pingrup, respectively. Lucerne plant densities declined over 2 seasons from 35 to 25 plants/m2 (Borden) and from 56 to 42 plants/m2 (Pingrup), although it produced herbage quantities similar to or greater than clover/medic pastures. The lucerne pasture also had a reduced weed component. Wheat yield at Borden was higher after lucerne (4.7 t/ha) than after annual pasture (4.0 t/ha), whereas at Pingrup yields were similar (2 t/ha) but grain protein was higher (13.7% compared with 12.6%) . There was no yield response to applied nitrogen after lucerne or annual pasture at either site, but it increased grain protein at both sites. There was no pasture treatment effect on canola yield or oil content at Borden (2 t/ha, 46% oil). However, at Pingrup yield was higher (1.5 t/ha compared to 1.3 t/ha) and oil content was similar (41%) following lucerne–wheat. The results show that lucerne provides an opportunity to develop farming systems with greater water-use in the wheatbelt of Western Australia, and that at least 2 crops can be grown after 3 years of lucerne before soil water returns to the level found after annual pasture.



2008 ◽  
Vol 88 (5) ◽  
pp. 837-848 ◽  
Author(s):  
S J Steckler ◽  
D J Pennock ◽  
F L Walley

The Illinois soil N test (ISNT) has been used to distinguish between soils that are responsive and non-responsive to fertilizer N in Illinois. We examined the suitability of this test, together with more traditional measures of soil fertility, including spring nitrate-N and soil organic carbon (SOC), for predicting yield and N fertilizer response of wheat (Triticum aestivum) on hummocky landscapes in Saskatchewan. The relationship between ISNT-N and wheat yield and fertilizer N response was assessed using data and soils previously collected for a variable-rate fertilizer study. Soils were re-analyzed for ISNT-N. Our goal was to determine if ISNT-N could be used to improve the prediction of crop yields. Although ISNT-N was correlated with both unfertilized wheat yield (r = 0.467, P = 0.01) and fertilizer N response (r = -0.671, P = 0.01) when data from all study sites were combined, correlations varied according to landscape position and site. Stronger correlations between nitrate-N and both unfertilized wheat yield (r = 0.721, P = 0.01) and fertilizer N response (r = -0.690, P = 0.01) indicated that ISNT-N offered no advantage over nitrate-N. Although both tests broadly discriminated between sites with high or low N fertility, few relationships were detected on a point-by-point basis within a field. Stepwise regression equations predicting yield and yield response did not include ISNT-N, due in part to the high degree of collinearity between ISNT-N and other variables such as SOC, suggesting that ISNT-N alone was not a key indicator of soil N supply. Key words: Illinois soil nitrogen test, potentially available N, soil N, fertilizer N recommendations



2010 ◽  
Vol 50 (2) ◽  
pp. 138 ◽  
Author(s):  
B. A. McGregor

The effects of animal species (AS; Angora goats, Merino sheep or goats and sheep mixed grazed together at ratio 1 : 1) and stocking rate (SR; 7.5, 10 and 12.5 animals/ha) on the availability, botanical composition and sward characteristics of annual temperate pastures under continuous grazing were determined in a replicated experiment from 1981 to 1984. AS and SR had significant effects on pasture availability and composition and many AS × SR interactions were detected. The pastures grazed by sheep had significantly reduced content and proportion of subterranean clover and more undesirable grasses compared with those grazed by goats. There were no differences in dry matter availabilities between goat- and sheep-grazed pastures at 7.5/ha, but at 10 and 12.5/ha goat pastures had significantly increased availabilities of green grass, dead and green clover and less weeds compared with sheep pastures. There was a significant AS × SR interaction for the density of seedlings in May following pasture germination. Between July and January, the height of pastures was greater under goats than sheep but from January to March pasture height declined more on goat-grazed than on sheep-grazed pastures. There was an AS × SR interaction for incidence of bare ground. Increasing the SR increased bare ground in pastures grazed by sheep but no change occurred on pastures grazed by goats. Changes in pasture characteristics due to increased SR were minimised on pastures grazed by goats but the grazing of sheep caused larger and faster changes and the pastures were damaged at the highest SR. Goats did not always select the same herbage material as sheep, changed their selection between seasons and were not less selective than sheep. Angora goats were flexible grazers and continually adapted their grazing behaviour to changing herbage conditions. Goat grazing led to an increase in subterranean clover, an accumulation of dead herbage at the base of the sward, reduced bare ground, taller pastures in spring and a more stable botanical composition. Mixed-grazed pasture characteristics were altered with SR. With careful management Angora goats on sheep farms may be used to manipulate pasture composition, to speed up establishment of subterranean clover, to decrease soil erosion and to reduce weed invasion.



2003 ◽  
Vol 43 (1) ◽  
pp. 61 ◽  
Author(s):  
G. D. Li ◽  
K. R. Helyar ◽  
C. M. Evans ◽  
M. C. Wilson ◽  
L. J. C. Castleman ◽  
...  

Two permanent pastures (annual pasture v. perennial pasture) were established in 1992 as part of the long-term field experiment, MASTER — Managing Acid Soils Through Efficient Rotations. The primary objective of the experiment was to develop an agricultural system that is economically viable and environmentally sustainable on the highly acidic soils in south-eastern Australia. This paper reports on the effects of lime on the botanical composition changes of annual and perennial pastures over 9 years. In general, lime increased the proportion of the desirable species, such as phalaris (Phalaris aquatica) in perennial pasture and subterranean clover (Trifolium subterraneum) in annual pastures, and decreased the proportion of the undesirable species, such as Vulpia spp., in both annual and perennial pastures, ultimately improving the quality of feed-on-offer to animals. As a result, the limed pastures carried 24% more sheep than the unlimed pastures, while maintaining individual animal performance similar for both limed and unlimed pastures. The phalaris-based perennial pasture was more stable in terms of maintaining the sown species than the annual pasture. Lime improved the persistence of phalaris and the longevity of the phalaris-based pasture should be at least 10 years. Lime changed the direction of plant succession of annual pastures. Without lime, Vulpia spp. gradually became more dominant while ryegrass and subterranean clover became less dominant in annual pastures. With lime, barley grass (Hordeum leporinum) gradually invaded the sward at the expense of ryegrass, thus reducing the benefits of lime, but this effect was less for the perennial pastures than for annual pastures. Liming perennial pastures should be more beneficial than liming annual pastures because of the beneficial effects on pasture composition. In addition, previously published work reported that liming perennial pastures improved sustainability through better use of water and nitrogen.



Sign in / Sign up

Export Citation Format

Share Document