The effects of stocking rate and nitrogen fertilizer on the productivity of irrigated perennial pasture grazed by dairy cows. 1. Pasture production, utilization and composition

1980 ◽  
Vol 20 (106) ◽  
pp. 529 ◽  
Author(s):  
CR Stockdale ◽  
KR King

The effects of stocking rate and nitrogen (N) fertilizer on the productivity of irrigated perennial pasture grazed by dairy cows was studied for 2 years at Kyabram, Victoria. There were ten treatments: five stocking rates ranging from 4.4 to 8.6 cows ha-l at both 0 and 224 kg N ha-1 year-1 . Although weeds did not invade the pasture, increases in stocking rate resulted in reduced daily pasture growth, and this was related to the level of residual pasture after grazing. Annual pasture production in both years declined by 0.394 t DM ha-1 for every additional cow per ha. The levels of the herbage minerals, N, P, K, Ca, Mg and Na were adequate from an animal health point of view at all stocking rates, at least in the short term. The response to N fertilizer declined from 17 to 3 kg DM kg-1 N applied, as stocking rate increased from 4.4 to 8.6 cows ha-1, and it appeared that this response was due mainly to an increase in the growth of the grasses. Apart from the stocking rate responses, which are specific to the Kyabram environment, a number of relations were found, which showed how residual pasture after grazing, pasture allocation and pasture utilization at a single grazing, influenced pasture intake. Providing allowances are made for pasture type and the level to which any particular pasture type can be grazed, these relations could be expected to give a reasonable assessment of pasture intake in other environments.

1980 ◽  
Vol 20 (106) ◽  
pp. 537 ◽  
Author(s):  
KR King ◽  
CR Stockdale

The relation between the stocking rate of dairy cows and their production from irrigated perennial pasture, with and without nitrogen (N) fertilizer, was studied over 2 years at Kyabram, Victoria. Pastures were rotationally grazed at stocking rates ranging from 4.4 to 8.6 cows ha-1. In each year, N treatments were topdressed four times at a rate of 56 kg N ha-1. For every additional cow per ha, production per ha decreased by 260 and 329 kg of milk, 12.3 and 15.5 kg of butterfat, and 10.7 and 14.5 kg of protein for years 1 and 2, respectively. In year one, the highest production of milk and butterfat (17,900 and 847 kg ha-1, respectively) was from cows stocked at 8.6 cows ha-1, and for protein (597 kg ha-1) from 7.6 cows ha-1. In year 2, production per ha of all milk products maximized and then declined. Maximum production of milk and butterfat (14,180 and 675 kg ha-1, respectively) was at 6.6 cows ha-1, and protein (508 kg ha-1) at 5.9 cows ha-1. Increasing stocking rate also reduced the liveweight of cows at all times. Topdressing with N fertilizer had no effect on total milk or butterfat production per cow, but consistently increased protein production. The range in response increased from 2 to 7 kg protein per cow at 4.4 and 8.6 cows ha-1, respectively. Application of N fertilizer increased liveweight per cow, with greater increases occurring at high stocking rates. In year 2, the efficiency of butterfat production over the whole year was 29.9, 29.3 and 37.0 kg of DM (pasture and supplements) per kg of butterfat produced for 4.4, 6.6 and 8.6 cows ha-1, respectively.


1990 ◽  
Vol 12 (1) ◽  
pp. 3 ◽  
Author(s):  
AJ Meppem ◽  
PW Johnston

A simulation model of a grazing enterprise was used to examine the economic risk associated with stocking rate decisions in the mulga lands. The model used historical daily rainfall records for Charleville (1890 - 1984) as input for determining annual pasture production. Stocking rates were set each year at the end of summer to utilize a portion of the available forage. Gross margins were determined for a total of six levels of pasture utilization (20% to 80%). The simulation results support the hypothesis that higher levels of pasture utilization lead to consistently lower pasture yields, and greater variability in income (high risk). To reduce risk, this simulation study suggests a more conservative use of the pasture. Optimum levels of pasture use therefore need to be determined; both from an individual graziers requirement to meet short term needs, and society's preference for long tern conservation of the pasture resource. This requires the ability to identify the direct benefits and costs of different levels of pasture use. This study has indicated the value of simulation in examining these costs and benefits.


1984 ◽  
Vol 103 (1) ◽  
pp. 161-170 ◽  
Author(s):  
P. G. Jennings ◽  
W. Holmes

SummaryTwo experiments were conducted with milking cows on continuously stocked perennial ryegrass pastures. In each a control group, T0, received 1 kg/day of a concentrate supplement and treatment groups T1 and T2 received 4 kg (Expt 1) or 5 kg/day (Expt 2) of a low quality T1 or a high quality T2 concentrate. In Expt 1 treatments were applied continuously for 14 weeks to a total of 30 cows. In Expt 2 a Latin square design for 9 weeks was conducted with 18 cows. The stocking rate of the pasture declined from 9·6 to 5·1 cows per ha (mean 6·7 cows/ha) from May to August (Expt 1) and was maintained at 3 cows/ha in August-October (Expt 2).Supplements increased total intakes by 0·92 and 0·77 kg organic matter (OM)/kg OM supplied in the concentrates respectively for Expts 1 and 2. Milk yields increased by 0·6 and 0·5 kg/kg concentrate supplied and supplemented cows showed small increases in live weight. Differences in lactation milk yield just approached significance. Grazing times were only slightly reduced by supplements and bite sizes were lower than normal. There was no important difference in animal performance between the two concentrates. The total output from the pasture was 19·6t milk and 115 GJ of utilized metabolizable energy per hectare.Reasons for the high supplementary effect of the concentrates and its implications for stocking rates are discussed.


1985 ◽  
Vol 25 (3) ◽  
pp. 505 ◽  
Author(s):  
TM Davison ◽  
RT Cowan ◽  
RK Shepherd ◽  
P Martin

A 3-year experiment was conducted at Kairi Research Station on the Atherton Tablelands, Queensland, to determine the effects of stocking rate and applied nitrogen fertilizer on the pasture yield and composition, diet selection by cows, and soil fertility of Gatton panic (Panicum maximum cv. Gatton) pastures. Thirty-two Friesian cows were used in a 4x2 factorial design: four stocking rates (2.0, 2.5, 3.0 and 3.5 cows/ha), each at two rates of fertilizer application 200 and 400 kg N/ha.year. The higher rate of fertilization increased the pasture green dry matter on offer at all samplings (P < 0.01); the increase ranged from 1 106 kg/ha in summer to 548 kg/ha in spring. Green dry matter decreased ( P< 0.0 1) with increasing stocking rate, with mean yields of 3736 and 2384 kg/ha at 2.0 and 3.5 cows/ha, respectively. Weed yields increased over the 3 years at the higher stocking rates for pastures receiving 200 kg N/ha.year. The crude protein content of leaf and stem increased with increasing stocking rate and amount of applied nitrogen fertilizer. Values ranged from 12.1 to 26.5% of dry matter (DM) in leaf and from 3.7 to 13.8% DM in stem. In leaf, sodium concentration (range 0.05-0.20% DM) was increased, while phosphorus concentration (range 0.21-0.44% DM) was decreased by the higher rate of fertilizer application. Plant sodium and phosphorus levels were inadequate for high levels of milk production. Dietary leaf content and crude protein contents were consistently increased by both a reduced stocking rate, and the higher rate of fertilization. Cows were able to select for leaf and at the lowest stocking rate, leaf in the diet averaged 38%; while the leaf content of the pasture was 20%. Dietary leaf content ranged from 38 to 57% in summer and from 11 to 36% in winter. Dietary crude protein ranged from 13 to 15% in summer and from 7 to 11% in winter and was positively correlated with pasture crude protein content and dietary leaf percentage. Soil pH decreased (P<0.05) from an overall mean of 6.3 in 1976 to 6.1 at 200 N and 5.8 at 400 N in 1979. Soil phosphorus status remained stable, while calcium and magnesium levels were lower (P<0.01) after 3 years.


1978 ◽  
Vol 29 (1) ◽  
pp. 103 ◽  
Author(s):  
LA Edye ◽  
WT Williams ◽  
WH Winter

The relationship between stocking rate and liveweight change per animal was examined over a period of 3 years for two continuously grazed pastures, one of Brachiaria and the other consisting of guinea grass with Endeavour stylo and Siratro. On an annual basis there was no significant effect of stocking rate over the last 2 years, but on a seasonal basis there were highly significant effects in all seasons. In the dry seasons, animal gain rose as the stocking rate fell, but in the last two wet seasons gains fell with the lower stocking rates. On an annual basis the two effects cancelled out. Response surfaces for gain versus pasture yield and stocking rate were curvilinear (quadratic) during the wet season and linear during the dry. Optimum stocking rates (for maximum gain per hectare) were determined for the wet and dry seasons; the rate was greatly affected by the yield of green material during the dry season but less so during the wet. The possible causes of this reversed wetseason effect are discussed.


1963 ◽  
Vol 61 (2) ◽  
pp. 147-166 ◽  
Author(s):  
C. P. McMeekan ◽  
M. J. Walshe

1. A large-scale grazing management study comparing rotational grazing and continuous grazing with dairy cows at two stocking rates over four complete production seasons is described.2. The four treatments were: (i) controlled grazing, light stocking rate; (ii) controlled grazing, heavy stocking rate; (iii) uncontrolled grazing, light stocking rate; (iv) uncontrolled grazing, heavy stocking rate.Each treatment involved 40 cows for a first 2-year phase and 42 cows for the following 2 years. Each herd had a normal age distribution pattern and seven 2-year-old first lactation heifers (17% of total herd) were introduced each year to maintain this pattern.3. Stocking rate was the more important factor affecting the efficiency of pasture utilization as measured by per acre output of milk and butterfat. In general, high stocking was associated with higher outputs per acre despite lower yields per animal.4. Grazing method was of less importance. In general, controlled rotational grazing was superior to uncontrolled continuous grazing, both per animal and per acre, but the average influence even of these extremes of management was only half that of stocking rate.5. Significant interactions between stocking rate and grazing method existed. Under continuous grazing a point was reached where production per acre declined to the vanishing point with increased stocking rate due to excessive depression of per cow yield: this point was not reached under rotational grazing at the same high stocking levels.6. The results suggest that optimum stocking rate under rotational grazing occurs at a level some 5–10% higher than under continuous grazing. A depression of 10–12% in per cow yield, compared with more lenient grazing, corresponds with optimum stocking level irrespective of the grazing system. This estimate is suggested as a guide line in applying the principles involved.


1978 ◽  
Vol 18 (95) ◽  
pp. 788 ◽  
Author(s):  
NH Shaw

Changes in the yield, botanical composition and chemical composition of a native pasture (Heteropogon contortus dominant) oversown with S. humilis (T.S.) were measured in a grazing experiment from 1966 to 1973. The 24 treatments were factorial combinations of two sowing methods for T.S. (ground sowing into spaced cultivated strips, or aerial sowing), three levels of molybdenized superphosphate (F0 = nil ; F1 = 125 kg ha-1 annually; F2 = 250 kg ha-1 annually plus an extra 250 kg ha-1 initially) and four stocking rates. Stocking rates were gradually increased during the experiment and for the last three years overlapping ranges were used for the three fertilizer levels; the overall range was then from 0.55 to 1.65 beasts ha 1 T.S. establishment by ground sowing was much more reliable than from aerial sowing, giving twice the average percentage frequency, and this proportion was maintained over years. High fertilizer improved establishment and the best legume stands were in the high fertilizer high stocking rate treatments. Total presentation yield of pasture was increased by fertilizer and reduced by high stocking rates. Over the last two years the means for March, adjusted by regression to the overall average stocking rate of 0.98 beasts ha-1, were 31 20,4020 and 5370 kg ha-1 for F0, F1 and F2 respectively, but these yields were reduced by ca 25 per cent for an increase of 0.5 beasts ha-1. H. contortus remained dominant and its mean contribution to total yield increased from 48 per cent in 1969 to 67 per cent in 1973. This proportion was reduced by 12.8 per cent over the range from 0.55 to 1.65 beasts ha-1, but high fertilizer had the opposite effect so that differences between the extremes low stocked F0 and high stocked F2 were small. The DM percentage yield of T.S. was strongly increased by fertilizer, and, most importantly, also by high stocking rates in the presence of fertilizer. Values for F0 treatments remained below 10 per cent, but in the final year values for F1 and F2 at the highest stocking rates were 36 and 27 per cent, respectively. Despite these large changes in T.S., there was overall stability of botanical composition. Phosphorus and nitrogen concentrations in T.S. and H. contortus were increased by superphosphate but there was an overall decline in potassium concentration. Soil phosphorus levels were greatly increased


1997 ◽  
Vol 37 (7) ◽  
pp. 755 ◽  
Author(s):  
R. J. Jones

Summary. Pasture production and steer liveweight gain were compared on native pasture (Bothriochloa decipiens, Heteropogon contortus, Themeda triandra and Chrysopogon fallax) and on native pasture oversown with Indian couch or Indian bluegrass (Bothriochloa pertusa). This grass was not a planned introduction to the area but is spreading in Central and North Queensland and its value as a pasture species is questioned by graziers. There were 3 nominal stocking rates of 0.3, 0.6 and 0.9 steers/ha. Each paddock was stocked with 3 steers of stratified ages. The experiment was sown in March 1988 and terminated in June 1993. The experiment, sited 50 km south of Townsville in eucalypt woodland on a solodic-solodised-solonetz soil, was sown in March 1988 and terminated in June 1993. Increases in stocking rate resulted in a linear decline in both pasture yield (by 3–5 t/unit increase in stocking rate) and steer gains (by more than 100 kg/unit increase in stocking rate). Differences between pastures were apparent only at the medium and high stocking rates where, over time, Indian couch gave higher pasture yields and steer gains. Younger steers gained far more weight than older steers. Mean gains over 3 years were weaners 125 kg/year, yearlings 93 kg/year and 2-year-old steers 46 kg/year. Native pasture remained fairly stable botanically at the low stocking rate, but the tufted perennial grass species declined at both the medium and high stocking rates. Sowing Indian couch hastened the botanical changes due to stocking rate, and it became the dominant species at these higher stocking rates. At the low stocking rate, the contribution of Indian couch declined from initial values indicating that this is not an invasive species in the area at a low stocking rate. Contribution of Indian couch to pasture yield was linearly related to stocking rate. Nutritional quality of the Indian couch was similar to the other native perennial grasses though calcium concentration was higher. Increased steer gains were related to higher yield on Indian couch pastures at the higher stocking rates rather than to improved quality. Maximum liveweight gain/ha was achieved at about 0.6 steers/ha. Stocking at 0.9 steers/ha was not sustainable. Even at the low stocking rate, steers would need to spend about 2.8 years on the pastures after weaning to reach 500 kg liveweight. It was concluded that B. pertusa is a useful pasture grass in this environment giving steer gains equal to, or higher than, the gains from the native pasture which it replaced.


1973 ◽  
Vol 81 (2) ◽  
pp. 193-204 ◽  
Author(s):  
J. P. Langlands ◽  
I. L. Bennett

SummaryA Phalaris tuberosa and Trifolium repens pasture was grazed continuously at stocking rates varying from 2·5 to 37·1 sheep per ha between 1964 and 1969. During this period herbage availability and composition, basal cover, root weight, water infiltration, soil moisture content, bulk density and chemical composition of the soil were measured at intervals.As stocking rate was increased, herbage availability, root weight, basal cover, soil pore space and the rate of water infiltration declined, and bulk density and the nitrogen and calcium contents of the herbage on offer increased. In periods of below-average rainfall, soil moisture and nitrate levels were greater when herbage was of low availability.Herbage production was calculated from estimates of herbage consumption and of litter decomposition, and averaged 8·45 t dry matter/ha/year; it was insensitive to changes in stocking rate over the range from 2 to 22 sheep/ha. The ratio, herbage consumption/ pasture production increased by 0'045 per unit increase in stocking rate.


Author(s):  
C.G. Roach ◽  
G. Stevens ◽  
D.A. Clark ◽  
P. Nicholas

encouraged by many regional councils, and the use of urea fertiliser on dairy farms has increased over recent years. A 3-year trial was started in September 1997 to investigate the effects of urea and dairy effluent applications on pastures, soils and groundwater quality. Twenty-one 0.25 ha paddocks received urea or dairy effluent at rates of 0, 100, 200, or 400 kg N/ha/yr, and were grazed by dairy cows. Increasing nitrogen application rates resulted in increased pasture production and ryegrass content, and nitrate leaching to ground water. Nitrate leaching was estimated to be 14, 18, 26 and 56 kg N/ha/yr for the 0, 100, 200 and 400 kg N/ha/yr application rates respectively. No differences in these responses were measured between urea and effluent when applied at the same rate of nitrogen. Application of dairy effluent resulted in increased average pasture potassium levels from 3.65%DM to 4.00%DM, which may have implications for animal health. Application of dairy effluent also decreased soil sulphur levels and increased soil magnesium status. Keywords: dairy effluent, groundwater, nitrate leaching, nitrogen, pasture, soil, urea


Sign in / Sign up

Export Citation Format

Share Document