Yield response of semi-dwarf rice varieties to applied nitrogen in New South Wales

1982 ◽  
Vol 22 (119) ◽  
pp. 402 ◽  
Author(s):  
RA Hartley ◽  
FL Milthorpe

Grain yields of two semi-dwarf varieties of rice were compared over a range of 0-225 kg applied nitrogen/ha in two seasons with yields of the tall varieties Calrose and Kulu, which were their major recurrent parents. Harvested yields of the semi-dwarfs increased over the entire range whereas those of Calrose and Kulu decreased above 100-150 kg nitrogen/ha. This appeared to be associated with a decrease in the number of panicleslm2 in the first season, and the inadequacy of the harvester to recover as much grain from lodged as unlodged crops in the second. Lodging was extensive in both experiments when the tall varieties received high applications of nitrogen, but was absent in the semidwarf varieties at all nitrogen levels. This appeared to influence the harvesting much more than the production of grain. However, it is suggested that other factors are also involved.The results indicated that the semi-dwarf character incorporated into current varieties could increase yields by about 1 t/ha with high nitrogen applications.


1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.



1965 ◽  
Vol 5 (19) ◽  
pp. 475 ◽  
Author(s):  
EB Boerema

In a series of five experiments in the irrigation areas of N.S.W., currently grown rice varieties were sod-seeded and compared under several rates of seeding and levels of applied nitrogen. There were no differences between varieties in their adaptability to the sod-seeding practice. Seedling survival was poor but higher seeding rates increased yields in only one of the four trials where they were tested. Responses to nitrogen fertilizer at seeding were small in the two experiments where it was included, but in one, 80 lb N per acre increased yield from 10,872 lb/acre to 12,292 lb/acre (P<0.05).



1975 ◽  
Vol 15 (77) ◽  
pp. 795 ◽  
Author(s):  
JA Thompson

A range of temperate annual and perennial legumes, naturalized or commonly sown in the area, was examined at three field sites in low fertility soils derived from granite on the south western slopes of the New England Region, New South Wales. They were compared over a four year period in terms of their persistence, dry matter and nitrogen production and their compatibility with associated temperate perennial grasses, The response of sown grass to nitrogen fertilizer application was also examined in the absence of legume. Ten legumes were examined at one site and six of these at the other two sites. In general, nitrogen yields were ranked similarly to total dry matter yields of all treatments, including grasses in the absence of legume. However, the legumes were ranked differently in terms of productivity of the legume component and productivity of associated grass. At all sites lucerne gave the highest yields of total dry matter and of legume and the lowest yield and persistence of associated grass-comparable to grass growing in the absence of legume or applied nitrogen. Subterranean clover was ranked second or third in total dry matter yield, depending on site, but provided the highest yield of associated grasscomparable to grass receiving high levels of applied nitrogen. Under this legume soil nitrogen levels tended to be highest. Rose clover, sown at one site only, yielded more legume dry matter than subterranean clover but grass yield was comparable to that with lucerne. The results suggest that subterranean clover is the superior legume for successful mixed sowings although inclusion of white clover could be justified. Lucerne appears to be best sown as a pure sward.



1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.



1982 ◽  
Vol 22 (115) ◽  
pp. 62 ◽  
Author(s):  
DP Heenan ◽  
LG Lewin

Two experiments were done at the Yanco Agricultural Research Centre, New South Wales, in 1978-79 and 1979-80 to measure the response of long grain rice, cv. Inga, to rates of nitrogen applied at two different times. The highest yields were recorded when the nitrogen was applied at panicle initiation. Increasing the rate from 100 to 200 kg N/ha at panicle initiation had no effect on grain yield. When the nitrogen was applied earlier, just before permanent water, yields were highest at 50 kg N/ha and declined at the highest rates (150 and 200 kg N/ha). This negative yield response was mainly due to a drop in the percentage of filled florets, and occurred despite an increase in panicle number.



1992 ◽  
Vol 43 (1) ◽  
pp. 105 ◽  
Author(s):  
DF Herridge ◽  
JF Holland

The effects of tillage practice and double cropping on growth, yield and N economies of summer crops were examined in field experiments near Tamworth, northern New South Wales. Sorghum, sunflower, soybean, mungbean, cowpea and pigeon pea were sown into alkaline, black earth soils which contained either high (Site A, sown January 1983), moderate (Site B, sown December 1983), or low concentrations of nitrate (Site C, sown December 1984). During the previous winters, the land had been sown to wheat (double crop) or fallowed using cultivation or no-tillage practices. At Sites A and B, dry matter yields, averaged over all crops, were increased by 34 and 14% under no-tillage. Average increases in grain yields at the two sites were 22 and 11%. At Site C, tillage practice did not affect yields. Soybean showed the greatest responses to no-tillage. Increases in grain yields were 46, 15 and 18% for Sites A, B and C respectively. The least responsive legume was mungbean. Yields of sorghum were increased by 41% at Site A; responses at Sites B and C ranged between a 9% decrease and a 7% increase. With double cropping, grain yields were, on average, 18 (Site A), 81 (Site B) and 72% (Site C) of the yields in the cultivated (fallow) plots. However, when comparisons were made for the 12 month periods, i.e. wheat and summer crops v. fallow and summer crops, production was more than doubled at Site B and tripled at Site C, compared with the cultivated fallow. Significant in the responses to double cropping were the 192 (Site B) and 230 mm rainfalls (Site C) during November and December that replenished the soil profile with water to a depth of >0.75 m. Assessments of soybean N2 fixation using the ureide method indicated large effects of site and season on the proportion of plant N derived from N2 fixation (range, 0-0.83), on the amount of N2 fixed (range, 0-233 kg N ha-1) and on the N balance as a result of the cropping (range, -69 to +45 kg N ha-1).



2005 ◽  
Vol 45 (3) ◽  
pp. 269 ◽  
Author(s):  
D. F. Herridge ◽  
M. J. Robertson ◽  
B. Cocks ◽  
M. B. Peoples ◽  
J. F. Holland ◽  
...  

Apparent nodulation failures and associated low grain yields have been reported for commercial mungbean (Vigna radiata) crops in southern Queensland and northern New South Wales. We therefore conducted on-farm surveys of 40 commercial mungbean crops in the region in which symbiotic traits, i.e. nodulation and nitrogen fixation, and biomass and grain yield were monitored. Effects of bradyrhizobial inoculation and inoculation methods on mungbean and soybean (Glycine max) symbiosis and yield were determined in experiments at 3 sites in northern New South Wales. Thirty-four of the 35 mungbean crops assessed for nodulation were nodulated. The relationship between soil nitrate to a depth of 90 cm at sowing and mungbean nodulation was not significant. However, at low-to-moderate soil nitrate levels (<100 kg N/ha), the mean nodule score was 1.6, compared with 0.5 at high (>100 kg N/ha) soil nitrate levels. Soil nitrate had a negative effect on the percentage of mungbean nitrogen derived from nitrogen fixation (%Ndfa). Mean %Ndfa values for soil nitrate levels <50, >50–100 and >100 kg N/ha were 35, 22 and 19% respectively. Grain yields of the surveyed mungbean crops varied from 0.3 to 2.1 t/ha, and were correlated with shoot dry matter. Grain yield was not significantly correlated either with sowing soil nitrate, nodule score or %Ndfa. In the inoculation experiments, mungbean did not nodulate as well as soybean, producing about one-third the number of nodules. Both species responded to inoculation with increased nodulation, although data from one of the sites suggested that responses during early growth of mungbean were not maintained during pod-fill. Effects of inoculation on mungbean %Ndfa were marginal. Average increases were 9%, based on natural 15N abundance, and 6%, based on the ureide method. Soybean %Ndfa, on the other hand, responded strongly to inoculation, with increases of 56 (15N) and 77% (ureide). Inoculation increased mungbean crop N by an average of 10% and grain yield by 6%, compared with responses to fertiliser nitrogen of 31% (crop N) and 10% (grain yield). For soybean, inoculation increased crop nitrogen by 43% and grain yield by 7%, similar to responses to fertiliser nitrogen of 45 (crop N) and 5% (grain yield). These results suggest that inoculated mungbean was N-limited and that inoculation of mungbean using current technology may be somewhat ineffectual. We concluded that low nodulation and nitrogen fixation of commercial mungbean most likely results from the suppressive effects of nitrate and/or insufficient numbers of bradyrhizobia in the soil. When low symbiosis and low soil nitrate are combined, N is likely to limit crop growth, and potentially grain yield. Suggested strategies for improving mungbean nodulation and nitrogen fixation in the northern grains belt include selection of more symbiotically competent plant and bradyrhizobial genotypes and more effective utilisation of established soil populations of mungbean bradyrhizobia.



1994 ◽  
Vol 34 (7) ◽  
pp. 933 ◽  
Author(s):  
RF Reinke ◽  
LG Lewin ◽  
RL Williams

New South Wales rice crops commonly take >180 days from sowing to harvest, and a reduction in crop duration is sought to increase the efficiency of rice production. The response of rice cultivars of differing growth duration to sowing time and N application was examined across 2 growing seasons. The highest yields were obtained at early sowing dates in each season. In season 2, the maximum yield of the short-duration cultivar M101 was not significantly different to the long-duration cultivars Calrose, Pelde, and M7, with yields >12 t/ha. However, yield of cv. M101 was significantly less than the long-duration cultivars at an early sowing date in season 1. Analysis of yield components did not clearly indicate the reason for reduced yield of the short duration cultivar. Damage by birds and mice before harvest, exacerbated by early maturity, is a possible cause.Later sowing reduced yields of all cultivars, with the short-duration cultivar-least affected. Optimum N application decreased with delay in sowing. At early sowings there was a positive yield response to increasing N, whereas at the latest sowings in each season the N response was negative for all cultivars. Where the yield response to applied N was positive, the yield component most associated with yield was the number of florets per unit area (r = 0.55). Where the yield response was negative, yield reductions were primarily caused by a reduction in the proportion of filled grains (r = 0.83). Minimum temperatures during the reproductive stage of each cultivar explained only a small amount of the variation in percentage of filled grain. Low minimum temperatures during the reproductive stage were not the sole cause of the reduction in proportion of filled grains of late-sown, high-N plots. The high yield potential of short-duration cultivars in The high yield potential of short-duration cultivars in the New South Wales rice-growing area is clearly demonstrated, as is the value of such cultivars where late sowing is unavoidable.



2019 ◽  
Vol 59 (4) ◽  
pp. 601 ◽  
Author(s):  
R. A. Hunter ◽  
P. M. Kennedy ◽  
E. J. Sparke

Statistical data from the years 1998–2005 were used to investigate the capacity of the grain industry in eastern Australia to supply the grain necessary for inclusion of 10% ethanol in petrol (E10), in addition to the demands of grain for feedlot cattle. Evidence is provided that the variations in grain yields and grain consumption by cattle in these years are representative of the on-going situation and that interpretations and conclusions have continuing relevance. During 1998–2005, annual production of cereal grains in eastern Australia varied between 10 and 25 million tonnes. Similar fluctuations (11 and 27 million tonnes) in annual grain yields were observed between 2006 and 2014. The Australian potential requirement for E10 ethanol is ~2500 ML annually, with a grain usage of 6.1–7.6 million tonnes depending on the grain sources used. Established national grain demand for ruminant and monogastric livestock, human consumption and other domestic uses is ~7.5 million tonnes per year. In years of average or higher grain yields in Queensland, New South Wales, Victoria and South Australia, the combined grain surpluses are more than sufficient for E10 ethanol to be produced domestically. In the years of the lowest grain yields, the surplus over more traditional usages is sufficient to satisfy only 50% of potential demand for E10. The greatest densities of feedlot cattle are in south-eastern Queensland, northern New South Wales and in the Murrumbidgee region of southern New South Wales. On a regional basis, the grain surplus to feedlot demand in most years in south-eastern Queensland is not sufficient to satisfy requirement for ethanol production without competition for grain. In years of highest yields, the grain surplus was sufficient for a 240-ML ethanol plant. Northern New South Wales could support at least two 400-ML plants in years of average and above yields, once established grain demands are met. The grain shortfall in years of lowest yield for one 400-ML plant is about half a million tonnes. Grain surpluses in average years in the Murrumbidgee region are sufficient to support at least one 400-ML plant. In years of lowest yield, only a 160-ML plant could be supported without competition for grain.



1991 ◽  
Vol 31 (1) ◽  
pp. 85 ◽  
Author(s):  
AD Doyle ◽  
RA Shapland

Experiments were conducted with dryland wheat on a nitrogen (N) deficient site near Gunnedah, northern New South Wales, in 1987 and 1988 to compare post-sowing foliar applications of N with urea drilled between the rows at sowing. Post-sowing N was applied at tillering, booting or at both stages at rates of 20 or 40 kg N/ha while presowing applications ranged from 0-106 kg N/ha. Above ground dry weight and N uptake increased with increasing N application at sowing. Post-sowing N application increased dry weight and N uptake, with generally greater increases in N uptake than in dry weight. Dry weight and N uptake for post-sowing N application were invariably less than when an equivalent amount of N had been applied at sowing. Grain yield was increased by the application of up to 106 kg N/ha at sowing in 1987 and up to 80 kg N/ha in 1988 when a greater degree of moisture stress during grain filling restricted yield responses. Post-sowing N increased grain yield, but the yield response was lower than for the application of an equivalent amount of N at sowing. Grain yield responses were lower when N was applied at booting rather than tillering. Yield responses over the 2 years were 0.35-0.39 t/ha and 0.44-0.68 t/ha for 20 and 40 kg N/ha, respectively, applied at tillering and 0.26-0.4 t/ha and 0.26-0.48 t/ha for N application at booting. Post-sowing N application increased grain protein, with greater increases for booting than for tillering applications. There was an apparent recovery in the grain of 48-56% of N applied at sowing, but only 25-48% of N applied post-sowing.



Sign in / Sign up

Export Citation Format

Share Document