Effect of fallowing practices on runoff and soil erosion in south-eastern Australia

1985 ◽  
Vol 25 (3) ◽  
pp. 628 ◽  
Author(s):  
JW Cooke

The effect on runoff and soil loss of four methods of preparation of fallow was investigated at each of three sites in north-central Victoria. There was a chemical fallow treatment (uncultivated) and three scarified treatments (smooth, medium and rough cultivation). When the results from the three sites were combined, there was 10.7 mm runoff from the uncultivated treatment, 5.1 mm from the smooth, 0.8 mm from the medium and 0.3 mm from the rough scarified treatments. Soil loss from the uncultivated treatment was 103 g/m2 compared with 87 g/m2 from the smooth, 22 g/m2 from the medium and 13 g/m2 from the rough treatment. The concentration of sediment in the runoff was negatively correlated (R2 = -0.56 to -0.98) with runoff. It ranged from 1.21% (w/w) for the uncultivated to 5.06% (w/w) for the rough scarified treatment. The results show that a regimen of minimum scarification to produce a rough surface, and then use of herbicides to control weeds, reduces soil loss compared with either an uncultivated or a smoothly cultivated soil surface.

1975 ◽  
Vol 23 (1) ◽  
pp. 113 ◽  
Author(s):  
MJ Littlejohn ◽  
JD Roberts

Mating calls of the northern and southern call races of the L. tasmaniensis complex are described. Analysis of call structure along a transect across the main contact between these allopatric forms in north central Victoria indicates that there is a zone of intergradation between 90 and 135 km wide, about 215 km long and with a north-westerly orientation. The interaction is interpreted as a secondary contact in which there is hybrid or recombinant superiority along a subtle ecological gradient.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2327 ◽  
Author(s):  
Layheang Song ◽  
Laurie Boithias ◽  
Oloth Sengtaheuanghoung ◽  
Chantha Oeurng ◽  
Christian Valentin ◽  
...  

Many mountainous regions of the humid tropics experience serious soil erosion following rapid changes in land use. In northern Lao People’s Democratic Republic (PDR), the replacement of traditional crops by tree plantations, such as teak trees, has led to a dramatic increase in floods and soil loss and to the degradation of basic soil ecosystem services such as water filtration by soil, fertility maintenance, etc. In this study, we hypothesized that conserving understory under teak trees would protect soil, limit surface runoff, and help reduce soil erosion. Using 1 m2 microplots installed in four teak tree plantations in northern Lao PDR over the rainy season of 2017, this study aimed to: (1) assess the effects on surface runoff and soil loss of four understory management practices, namely teak with no understory (TNU; control treatment), teak with low density of understory (TLU), teak with high density of understory (THU), and teak with broom grass, Thysanolaena latifolia (TBG); (2) suggest soil erosion mitigation management practices; and (3) identify a field visual indicator allowing a rapid appraisal of soil erosion intensity. We monitored surface runoff and soil loss, and measured teak tree and understory characteristics (height and percentage of cover) and soil surface features. We estimated the relationships among these variables through statistics and regression analyses. THU and TBG had the smallest runoff coefficient (23% for both) and soil loss (465 and 381 g·m−2, respectively). The runoff coefficient and soil loss in TLU were 35% and 1115 g·m−2, respectively. TNU had the highest runoff coefficient and soil loss (60%, 5455 g·m−2) associated to the highest crusting rate (82%). Hence, the soil loss in TBG was 14-times less than in TNU and teak tree plantation owners could divide soil loss by 14 by keeping understory, such as broom grass, within teak tree plantations. Indeed, a high runoff coefficient and soil loss in TNU was explained by the kinetic energy of rain drops falling from the broad leaves of the tall teak trees down to bare soil, devoid of plant residues, thus leading to severe soil surface crusting and soil detachment. The areal percentage of pedestal features was a reliable indicator of soil erosion intensity. Overall, promoting understory, such as broom grass, in teak tree plantations would: (1) limit surface runoff and improve soil infiltrability, thus increase soil water stock available for both root absorption and groundwater recharge; and (2) mitigate soil loss while favoring soil fertility conservation.


Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 833 ◽  
Author(s):  
C Carroll ◽  
M Halpin ◽  
K Bell ◽  
J Mollison

Runoff and sediment movement were measured from irrigated furrows of different lengths on a Vertisol in central Queensland. Two farm properties (Denaro's and Roberts') were used to compare a short furrow length (SFL) and a long furrow length (LFL). At Denaro's farm, furrows were 241 and 482 m long, and at Roberts' farm they were 151 and 298 m long, with gradients of 1.0% and 1.3% respectively. Runoff and soil loss were measured from six furrows. At Denaro's farm, soil movement off the farm was measured at a taildrain outlet. Sediment concentration from both rainfall and irrigation declined when cultivation had ceased, soil in the furrows had consolidated and when the cotton canopy provided surface cover. Total soil loss from rainfall and irrigation was approximately 4-5 t ha-1. Rainstorms caused most of the seasonal soil loss, typically 3-4 t ha-1. The critical soil erosion period was between pre-plant irrigation and canopy closure. Soil surface cover, peak runoff rate and furrow length explained 97% of variance in soil loss caused by rainfall. Furrow length was not significant in the soil loss model for irrigation (r2 0.59).


Author(s):  
Nguyễn Quang Việt ◽  
Trương Đình Trọng ◽  
Hồ Thị Nga

Vinh Linh, the northern district of Quang Tri province is characterized by a diversified topography with a large variety of elevations, high rainfall, and decreasing land cover due to forest exploiting for cultivation land. Thus, there is a high risk of erosion, soil fertility washout. With the support of GIS technology, the authors used the rMMF model to measure soil erosion. The input data of model including 15 coefficients related to topography, soil properties, climate and land cover. The simulations of rMMF include estimates of rainfall energy, runoff, soil particle detachment by raindrop, soil particle detachment by runoff, sediment transport capacity of runoff and soil loss. The result showed that amount of soil loss in year is estimated to vary between 0 kg/m2 minimum and 149 kg/m2 maximum and is divided into 4-classes of erosion. Light class almost covers the region researched (75.9% of total area), while moderate class occupies 8.1% of total area, strong classes only hold small area (16% of total area). Therefore, protection of the forest floor in sloping areas is one of the most effective methods to reduce soil erosion.


2011 ◽  
Vol 91 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Zisheng Xing ◽  
Lien Chow ◽  
Herb W. Rees ◽  
Fanrui Meng ◽  
John Monteith ◽  
...  

Xing, Z., Chow, L., Rees, H. W., Meng, F., Monteith, J. and Stevens, L. 2011. A comparison of effects of one-pass and conventional potato hilling on water runoff and soil erosion under simulated rainfall. Can. J. Soil Sci. 91: 279–290. Hilling plays an important role in potato production, but is found to be inducing soil loss. An artificial rainfall simulation system was used to evaluate the differences between one-pass hilling (OPH, hilling performed when planting, or shortly after planting) and conventional hilling (CH, hilling performed approximately 35–45 d after planting) as well as their combination with a cover crop (ryegrass; _R) on runoff and soil loss. A three-replicate randomized block experimental design with constant rainfall intensity (120 mm h−1) was used in this study. No significant differences in runoff were found between different hilling methods. The soil losses, however, showed significant differences both among treatments, among canopy cover classes, and among their interaction terms (all P<0.001). The mean soil loss for CH was significantly higher than that for OPH, by 40%, and the mean soil loss for CH_R was higher than that for OPH_R by 57%. On average, the CH treatments (CH and CH_R) induced greater soil loss than the OPH treatments (OPH and OPH_R) by 47%. Further, the effects can vary with different canopy cover percentages. The OPH treatments (OPH and OPH_R) induced more soil loss than CH treatments (CH and CH_R), by 4.4 to 12.8%, in the <30% canopy cover group, while soil loss in the CH treatments was greater than that in OPH treatments for both the 30–70% and >70% canopy cover groups by 21–94%. Irrespective of treatment, soil loss before canopy forming was 2.4 to 8.9 times higher than the soil loss for the partial to full canopy period. With a cover crop, the CH and OPH treatments can reduce soil loss by 37–55%. One-pass hilling initiated runoff earlier than CH. The water runoff and soil loss with respect to the elapsed time since initialization of water runoff and soil loss could be modeled by a three-parameter Sigmoid function with r 2≥0.94. The information generated from this study could be used in landscape modeling to study the impacts of potato production on soil and stream water quality.


2021 ◽  
Vol 54 (1) ◽  
pp. 1
Author(s):  
Amar Kumar Kathwas ◽  
Nilanchal Patel

<p>Geomorphology depicts the qualitative and quantitative characteristics of both terrain and landscape features combined with the processes responsible for its evolution. Soil erosion by water involves processes, which removes soil particles and organic matter from the upper sheet of the soil surface, and then transports the eroded material to distant location under the action of water. Very few studies have been conducted on the nature and dynamics of soil erosion in the different geomorphologic features. In the present investigation, an attempt has been made to assess the control of geomorphologic features on the soil loss. Universal Soil Loss Equation (USLE) was used to determine soil loss from the various geomorphological landforms. Principal component analysis (PCA) was implemented on the USLE parameters to determine the degree of association between the individual principal components and the USLE-derived soil loss. Results obtained from the investigation signify the influence of the various landforms on soil erosion. PC5 is found to be significantly correlated with the USLE-derived soil loss. The results ascertained significant association between the soil loss and geomorphological landforms, and therefore, suitable strategies can be implemented to alleviate soil loss in the individual landforms.</p>


Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

The history of soil erosion is an integral part of the agriculture. All over the world, wherever human being started the agricultural operations, there exists the problem of soil erosion in some extent. Soil erosion leads to the reduction of water infiltration rate and enhances runoff and soil degradation. This study focuses on Sebeya catchment located in the Western part of Rwanda. The main objective of this study was to assess various preventive measures against soil surface crusting and development of runoff coefficients in order to minimize the soil loss in Sebeya catchment agricultural fields. The proposed methodology was much concerned with the efficiency analysis of soil conservation practice of mulching in maize cover crops. The names of the three experimental field plots sited are Maize-Fertilizer-Mulching (MFM), Maize-Fertilizer (MF) and Bare Soil (BS) which were set in Rugerero Sector of Rubavu District. Each of these 3 plots was constructed with its runoff collecting tank and they were under similar conditions except land cover. Samples of soil from field plots and water from runoff collecting tanks were tested for soil classification and soil loss estimation from each plot respectively. The analysis of results showed that soil of the experimental plots is a gravelly sand with (sand:56.27%; clay and silt: 3.24% and gravel: 40.49%). Also, the results showed that the plot coded as MFM, has high moisture content with low runoff and soil loss compared to 2 other plots. This research revealed that soil conservation practices such as surface mulching and vegetative cover reduce runoff, soil loss and are well recommended for preventing and controlling soil surface crusting. Keywords: Soil erosion, mulching, soil crusting, field experiments, Rwanda


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 29
Author(s):  
Barrena-González ◽  
Rodrigo-Comino ◽  
Pulido ◽  
Cerdà

Some issues remain still unclear in the studies related to soil erosion in vineyards: (i) the accuracy of the measures; (ii) the standardization of the procedures; and, (iii) the huge amount of viticultural areas that are not still measured. In this investigation, we will show research in a non-studied viticultural region using a standard procedure before tested in other vineyards (ISUM -Improved Stock Unearthing Method-), testing different plot sizes and a number of measures. We will estimate soil loss rates in the Tierra de Barros (Extremadura, SW Spain) using the graft union of the vines as a passive biomarker of the soil surface level changes and extra-measures in the inter-row areas. For this study case, for the first time, ISUM was applied to three inter-row and four rows in order to confirm how many points and transects must be measured.


1981 ◽  
Vol 61 (2) ◽  
pp. 451-454 ◽  
Author(s):  
L. J. P. VAN VLIET ◽  
G. J. WALL

Soil loss prediction models such as the universal soil loss equation do not usually reflect the influence of snowmelt events on annual soil loss estimates. Plot studies (2% and 6% slopes) conducted over three winters in Southern Ontario to measure runoff and soil loss from spring-plowed corn crops revealed that winter soil erosion losses represented up to 10% of annual soil loss.


2003 ◽  
Vol 43 (10) ◽  
pp. 1231 ◽  
Author(s):  
S. J. Marcroft ◽  
S. J. Sprague ◽  
S. J. Pymer ◽  
P. A. Salisbury ◽  
B. J. Howlett

The production of windborne ascospore inoculum of the blackleg fungus (Leptosphaeria maculans) was determined during 2000 and 2001 in 3 environments (Birchip, low rainfall; Wonwondah, medium rainfall; Lake Bolac, high rainfall) in Victoria. The weight of canola stubble (kg/ha) remaining on the soil surface in paddocks was estimated 6, 18, 30 and 42 months after harvest of the original canola crop. In all 3 environments only small amounts of stubble were present 18 months after harvest. Eighty percent of the 6-month-old stubble comprised stems and branches, with the remaining 20% being root material, while 42-month-old stubble consisted only of root material. Paddocks subjected to raking and burning contained only half the weight of stubble compared with paddocks that were harrowed. Where canola was harvested in January, even when no management strategy was used, 80% of subsequent stubble was no longer on the soil surface by July of that year. Pseudothecia from 6-month-old stubble from the high rainfall environment discharged significantly more ascospores than stubble of the same age from the medium rainfall environment, which in turn discharged more than stubble from the low rainfall environment. In all environments, paddocks containing 6-month-old canola stubble discharged 30-fold as many ascospores per hectare as older stubble paddocks.


Sign in / Sign up

Export Citation Format

Share Document