Towards more sustainable pastures: lessons learnt

2000 ◽  
Vol 40 (2) ◽  
pp. 343 ◽  
Author(s):  
D. R. Kemp ◽  
D. L. Michalk ◽  
J. M. Virgona

The Temperate Pasture Sustainability Key Program (TPSKP) was established across south-eastern Australia to test the hypotheses that an improved perennial grass content in pastures would result in fewer weeds, better water use (and hence lesser impacts on soil salinity), and lower soil acidification rates. Grazing tactics were seen as a means to enhance or maintain the perennial grass content. Soil and water sustainability experiments in summer and winter dominant rainfall environments showed fewer weeds, improvements in water use and less acidity under perennial versus annual grass pastures. Further work is needed to determine if these gains are sufficient to make perennial grass pastures sustainable in the long-term as some nitrate leakage still occurred at the winter rainfall site. Indicators were developed to rate the sustainability of treatments within experiments. A subset of these indicators was common across experiments and could readily be used by farmers to provide an initial assessment of the soil and water sustainability of their pasture systems. These are: the mineral nitrogen at the bottom of the root zone (40–60 cm); soil pH at the surface and bottom of the root zone and perennial grass content by species. Managing pastures through droughts is a critical aspect of grazing management in Australia. Experiments within the TPSKP demonstrated that perennial grasses survived during drought when maintained above critical lower biomass values. These values ranged from 0.5 to 1.5 t DM/ha depending upon species. Over all experiments, there was general support for the view that maintaining a higher level of biomass in pastures resulted in more sustainable systems. Twenty-three grazing experiments using an open communal grazing design showed that most perennial grasses were sensitive to grazing at some stage in their seasonal growth cycles. The exceptions were inconclusive for several reasons e.g. the grazing pressure may not have been high enough at those sites to elucidate any effects; they occurred where the perennial grass content was less than 10% or exceeded 70%, of the sward; or were confounded by interactions between species where the species under study was not dominant. After taking these exceptions into account, it was then possible to determine where grazing tactics could be expected to work. Species differed in their response to grazing. Some perennial grasses were more sensitive to grazing during periods of stress (e.g. dry summers) than when actively growing (e.g. cocksfoot), while the reverse applied with others (e.g. phalaris). Of the grasses sensitive to grazing when actively growing, sensitivity of some was largely confined to the reproductive period (e.g. perennial ryegrass). Across most experiments, continuous grazing resulted in either a decline in or no net benefit to, the perennial grass content. Microlaena stipoides was the only species to respond to increased grazing pressure — this only applied in spring. The experiments clearly showed that tactical rests were an important tool for grassland management. The effects recorded were predominantly expressed through impacts on vegetative growth and survival of existing plants. Short-term experiments and dry seasons did not enable recruitment processes to be studied. Within pastures, grazing tactics can influence many species. The challenge is to use the TPSKP outcomes to develop strategies that optimise the composition of these swards. Due to the short-term nature of these experiments the results were evaluated within a conservative framework and often simply on the absolute level of parameters. Techniques need to be developed to more effectively monitor the process (i.e. rates of change), rather than the consequences (i.e. ends). The information gained in this program needs to be incorporated into practical strategies for better management of pastures and tested at a commercial scale. The TPSKP was one of the largest, coordinated pasture programs ever attempted. Some major outcomes were the experience gained by a large number of grassland scientists in running such programs, the development and acceptance of standardised measurement protocols and a much stronger network among grazing systems scientists committed to achieving improved management systems.

1996 ◽  
Vol 18 (1) ◽  
pp. 3 ◽  
Author(s):  
VJ Anderson ◽  
KC Hodgkinson ◽  
AC Grice

This study examined the effects of previous grazing pressure, position in the landscape and apparent seed trapping capability of soil surface micro-sites on recruitment of the perennial grass Monachather paradoxa (mulga oats) in a semi-arid woodland. Seedling emergence was counted on small plots which had been kept moist for one month. The plots were on bare ground, or at grass tussocks, or at log mounds, sited in the run-off, interception and run-on zones of paddocks that had been grazed for six years at 0.3 and 0.8 sheep equivalent/ha. Few naturally occurring perennial grass seedlings emerged on any of the sites. The level of previous grazing pressure influenced the recruitment of grasses from natural sources as well as from seed of M. paradoxa broadcast on the soil surface; significantly more grass seedlings recruited in paddocks stocked at 0.3 than at 0.8 sheep/ha. Emergence of the sown grass did not differ significantly between the three zones in the landscape, but trends in the data suggest the interception zone may have been the most favourable. Recruitment from in situ grass seed was highest in the mulga grove (run-on) zone. Most seedlings of the sown grass emerged around the bases of existing perennial grass tussocks, but recruitment of volunteer perennial and annual grasses was more evenly distributed between the mulga log-mounds and perennial grass tussocks. It is concluded that very low levels of readily germinable seed of perennial grasses remained in the soil at the end of the drought and that areas with a history of high grazing pressure have less probability of grass recruitment when suitable rain occurs.


2006 ◽  
Vol 46 (4) ◽  
pp. 439 ◽  
Author(s):  
W. McG. King ◽  
P. M. Dowling ◽  
D. L. Michalk ◽  
D. R. Kemp ◽  
G. D. Millar ◽  
...  

Temperate perennial grass-based pastures dominate the high rainfall zone of south-eastern Australia and support a major livestock production industry. This area has experienced a recent change in overall pasture condition, however, typified by a reduction in the abundance of perennial grasses and an increasingly prominent winter-annual grass weed component. Improving the condition and productivity of these pastures can be achieved by improved management but this requires better knowledge of the interactions between management options and pasture species composition and of the interaction between pasture vegetation and the complex effects of a heterogeneous landscape. This paper reports the results of an intensive survey of a 60-ha paddock that was designed to identify the species present, determine their patterns of distribution and examine the relationships between pasture vegetation and the environment. The survey of species present in late summer was supplemented by the identification of seedlings that later emerged from extracted soil cores and by soil physical and chemical analyses. Data were analysed using ordination and interpreted with GIS software so that topographic features could be considered. The most frequently identified taxa were Hypochaeris radicata, Austrodanthonia spp. and Bothriochloa spp. (in late summer) and Vulpia spp., Bromus molliformis and Trifolium subterraneum (winter-annual species). Austrodanthonia spp. were commonly found on the drier ridges and more acid soils with lower phosphate levels. These were also the areas dominated in spring by Vulpia spp. and were generally lower in plant species richness overall. The most species-rich areas occurred downslope where soil fertility was higher and less moisture stress was presumably experienced. The measured environmental factors explained a substantial proportion of the variation in the vegetation dataset, which underlined the importance of considering landscape effects in the management of typical tablelands pastures.


2014 ◽  
Vol 65 (8) ◽  
pp. 767 ◽  
Author(s):  
M. L. Mitchell ◽  
J. M. Virgona ◽  
J. L. Jacobs ◽  
D. R. Kemp

Microlaena (Microlaena stipoides var. stipoides (Labill.) R.Br.) is a C3 perennial grass that is native to areas of south-eastern Australia. In this region, perennial grasses are important for the grazing industries because of their extended growing season and persistence over several years. This series of experiments focused on the population biology of Microlaena by studying the phenology (when seed was set), seed rain (how much seed was produced and where it fell), seed germination, germinable seedbank, seed predation and seedling recruitment in a pasture. Experiments were conducted at Chiltern, in north-eastern Victoria, on an existing native grass pasture dominated by Microlaena. Seed yields were substantial (mean 800 seeds m–2), with seed rain occurring over December–May. Microlaena has two distinct periods of high seed rain, in early summer and in early autumn. Seed predation is high. Within a 24-h period during peak seed production, up to 30% of Microlaena seed was removed from a pasture, primarily by ants. Microlaena seedlings recruited throughout an open paddock; however, seedling density was low (5 seedlings m–2). Microlaena represented only low numbers in the seedbank (0.01–0.05% of total); hence, any seedlings of Microlaena that germinate from the seedbank would face immense competition from other species. Management strategies for Microlaena-dominant pastures need to focus on the maintenance of existing plants.


2017 ◽  
Vol 39 (1) ◽  
pp. 59
Author(s):  
Ronald B. Hacker ◽  
Ian D. Toole ◽  
Gavin J. Melville ◽  
Yohannes Alemseged ◽  
Warren J. Smith

Treatments to reduce available soil nitrogen and achieve specified levels of weed control were evaluated for their capacity to promote regeneration of native perennial grasses in a degraded semi-arid woodland in central-western New South Wales. Treatments were factorial combinations of nitrogen-reduction levels and weed-control levels. The four levels of nitrogen reduction were no intervention, and oversowing of an unfertilised summer crop, an unfertilised winter crop or an unfertilised perennial grass. The three weed-control levels were defined by the outcome sought rather than the chemical applied and were nil, control of annual legumes and control of all annual species (AA). Regeneration of perennial grasses, predominantly Enteropogon acicularis, was promoted most rapidly by the AA level of weed control with no introduction of sown species. Sown species negated the benefits of weed control and limited but did not prevent the regeneration of native perennials. Sown species also contributed substantially to biomass production, which was otherwise severely limited under the AA level of weed control, and they were effective in reducing soil nitrogen availability. Sown species in combination with appropriate herbicide use can therefore maintain or increase available forage in the short–medium term, permit a low rate of native perennial grass recruitment, and condition the system (by reducing soil mineral nitrogen) for more rapid regeneration of native perennials should annual sowings be discontinued or a sown grass fail to persist. Soil nitrate was reduced roughly in proportion to biomass production. High levels of soil nitrate did not inhibit native perennial grass regeneration when biomass was suppressed by AA weed control, and may be beneficial for pastoral production, but could also render sites more susceptible to future invasion of exotic annuals. The need for astute grazing management of the restored grassland is thus emphasised. This study was conducted on a site that supported a remnant population of perennial grasses. Use of the nitrogen-reduction techniques described may not be appropriate on sites where very few perennial grass plants remain.


2005 ◽  
Vol 56 (11) ◽  
pp. 1261 ◽  
Author(s):  
T. P. Bolger ◽  
A. R. Rivelli ◽  
D. L. Garden

Perennial grasses are the key to the economic and environmental sustainability of pastures for livestock grazing in south-eastern Australia. Mortality of perennial grasses can occur during drought periods and there is anecdotal evidence of differences in drought resistance among species, but information on the basic ecophysiological responses of these species to drought is lacking. An experiment was conducted to determine the responses of 7 native and 3 introduced perennial grass species to continuous drought. Leaf survival during severe drought varied among the species nearly 4-fold, from 11 to 40 days, and was considered a measure of their overall drought resistance. All of the species had good dehydration tolerance, so the differences in drought resistance were related more to their dehydration avoidance traits, specifically to the amount of water available to the plant at the point where plant transpiration became minimal. The native species had both the longest and shortest leaf survival periods, with the introduced species ranking intermediate. Species exhibited various morphological traits that contributed to dehydration avoidance during severe drought, including leaf folding or rolling, rapid leaf shedding, and large amounts of cuticular wax. The results are discussed in terms of their implications for perennial grass persistence in south-eastern and in south-western Australia.


2006 ◽  
Vol 46 (10) ◽  
pp. 1389 ◽  
Author(s):  
L. J. Thomson

An important aspect of increasing the sustainability of agricultural production in dry continents such as Australia is decreasing water use. In this study full irrigation is compared with partial rootzone drying, a method that uses targeted controlled watering to reduce water use while maintaining production in vineyards. The impact of the 2 irrigation methods on invertebrates with potential to influence productivity (pests, predators, parasitoids and soil macroinvertebrates) in a vineyard in south-eastern Australia is also investigated. Invertebrates were sampled at ground level and in the canopy using 3 methods: pitfall traps and 2 types of sticky trap. Earthworms were sampled by hand sorting soil. Initial sorting of the collections was to the order level. The implementation of partial rootzone drying throughout the growing season (December–March) over 2 consecutive years had little effect on the invertebrate orders analysed. Only 2 generalist predator orders (Araneae and Coleoptera) and earthworms (Haplotaxida) were significantly affected under conditions of water stress. These data suggest that reduction of irrigation of the magnitude required for partial rootzone drying has limited consequences for natural enemies of vineyard pests and soil macroinvertebrates in the short term.


2000 ◽  
Vol 40 (2) ◽  
pp. 125 ◽  
Author(s):  
D. R. Kemp ◽  
P. M. Dowling

Naturalised pastures across the higher rainfall (>600 mm) perennial pasture zone of south-eastern Australia are less productive than they were, while sown pastures fail to maintain their initial levels of production. Several factors have contributed to this, including lack of knowledge of suitable grazing practices, weed invasion, increasing acid soils, rising water tables and poor management practices during droughts. A key issue in each case is the decline in perennial grass species which is both a cause and effect of the decline in productivity and sustainability of these ecosystems. This paper introduces a volume devoted to the largest collaborative study done to evaluate tactics for better grazing management and to improve the sustainability of perennial pasture ecosystems. Grazing practices to manage the composition of pastures have been largely neglected in pasture research, but are an important first step in improving pasture sustainability. This paper also outlines a new, open communal grazing experimental design which was developed and used across 24 sites on farms in New South Wales, Victoria, Tasmania and South Australia, to evaluate tactics for grazing management. The general aim across these experiments was to maintain (if adequate) or enhance (if degraded), the proportion of desirable perennial grasses in the sward to achieve more sustainable pastures. The results will provide the basis for building more sustainable grazing systems.


1981 ◽  
Vol 29 (5) ◽  
pp. 533 ◽  
Author(s):  
DM Orr

Seasonal changes in the quantitative floristics at a wide range of Astrebla grassland sites in south-western Queensland were monitored between 1972 and 1980 with a wheel point apparatus. Changes in the floristics were measured in terms of both relative abundance and basal cover. A large increase in the relative abundance of perennial grasses, particularly Aristida latifolia, Astrebla spp. and Dichanthium sericeum, occurred between 1972 and 1976. This increase was at the expense of annual grasses and forbs which declined in both relative abundance and number of genera present. The relative abundance of perennial grasses declined between 1978 and 1980 and this was associated with a large increase in the forbs such as Daucus glochidiatus and Plantago spp., particularly at southern sites. The contribution of annual grasses to botanical composition remained low throughout the period. Total basal cover differed between years although these differences were not significant. As perennial grass, particularly Astrebla spp., was the major vegetation component of total basal cover, changes in the latter were associated mainly with changes in the basal cover of Astrebla spp. Changes in the contribution of individual species to total basal cover were related to changes in the relative abundance of those species. Changes in botanical composition in Astrebla grassland may be influenced more by trends in seasonal rainfall than by grazing pressure.


1994 ◽  
Vol 34 (3) ◽  
pp. 355 ◽  
Author(s):  
TJ Hall ◽  
RW Walker

Adaptation indices for introduced perennial grasses were derived for a site in the seasonally dry tropics of North Queensland to determine the suitability of grasses as a component of sown legume pastures. Grasses are required to replace native species that are intolerant of the heavy grazing pressure imposed on these legume-based pastures. Agronomic, production, morphological, and reproductive data on 143 accessions of 20 perennial grass genera were compared from 1983 to 1987. The grasses were grown in rows in a grazed Seca and Verano stylo pasture. The seed production potential of 40 Digitaria accessions grown in swards under irrigation was also assessed. The stoloniferous species Bothriochloa pertusa, Digitaria milanjiana, D. taatalensis, B. insculpta, and Urochloa mosamhicensis had the highest adaptation indices under continuous grazing. Digitaria accessions with the ability to produce appreciable viable seed were identified. Andropogon gayanus, a tussock species, had the highest yield and most spread in the first 2 years in the absence of wet season grazing. The potential of B. pertusa and D. milanjiana for stabilising legume pastures has been identified, and the need for wet season grazing management of tussock species has been shown. The range of genetic material in D. milanjiana requires further environmental evaluation.


1995 ◽  
Vol 17 (1) ◽  
pp. 26 ◽  
Author(s):  
AC Grice ◽  
I Barchia

Changed grazing regimes since European settlement have been widely proposed as the cause of a decline of indigenous perennial grasses in the semi-arid woodlands of eastern Australia. A five year experiment using exclosures examined the effects of grazing on densities of perennial grasses. Short- lived Stipa spp. and Aristida spp. were dominant at most sites. Their densities fluctuated greatly with season and reached over 200 plants/m2 during climatically favourable periods. The long-lived Eragrostis eriopoda occurred at densities that were generally less than 5 plants/m2 and its populations were relatively stable. The response of Enneapogon avenaceus was distinctive. Though its density fluctuated considerably, successive peaks in density were higher and the species increased more in ungrazed areas than in destocked or unfenced areas. The differences between grazed and ungrazed populations became greater with successive peaks in density. Within the short periods that pastoralists are likely to be willing or able to apply such treatments, destocking or even removing all herbivores is unlikely to have a large effect on the density of many palatable perennial grass species. The rate of response to resting pastures will depend on seasonal conditions.


Sign in / Sign up

Export Citation Format

Share Document