Sensitivity of eight cereal and legume species to the compaction status of deep, sandy soils

1991 ◽  
Vol 31 (3) ◽  
pp. 347 ◽  
Author(s):  
CWL Henderson

The effects of soil compaction and deep ripping on the growth and yield of crop (wheat, barley, oats, triticale, narrow leaf lupins and field peas) and pasture species (barrel medic and subterranean clover) were investigated for deep, sandy soils near Geraldton, Western Australia. In 1984 (an average rainfall season), growth and yields of all species were substantially reduced by soil compaction. Lupins were not included in the experiment. Barley, wheat and pea yields were reduced by around 45%; oat and triticale yields by 30%; and spring biomass of both pasture species was reduced by about 30%. The differences in response between the species were not significant (P>0.05). In 1985 (a very dry year), amelioration of soil compaction by deep ripping increased the dry matter at flowering of all the species, including lupins, by about 30%. Severe water stress in the cereals after flowering prevented the conversion of this dry matter advantage into grain yield differences. Because of late flowering and slow maturation, the yield of the oats was significantly (P<0.05) lower on the deep-ripped areas, compared with the yield on the compacted soil. Deep ripping increased the yield of peas by 60% and lupins by 20%, probably because flowering and seed filling were completed before the onset of severe water stress. For deep, sandy soils in mediterranean environments, maximum economic benefit would normally accrue from deep ripping prior to the cereal phase, given that current agronomic principles generally preclude the growing of peas on these soils. Selection of cereal species mainly depends on relative yields and prices; however, the results suggest that use of cultivars with rapid early growth, early flowering and quick maturity would maximise the response to compaction amelioration and minimise the risk of poor grain filling.

1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


2017 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
MM Kamrozzaman ◽  
MAH Khan ◽  
S Ahmed ◽  
N Sultana

An experiment was conducted at Sadipur charland under Farming System Research and Development Site, Hatgobindapur, Faridpur, during rabi season of 2012-13 and 2013-14 to study the growth and yield performance of cv. BARI Gom-24 as affected by different dates of sowing under Agro-ecological Zone-12 (AEZ-12) of Bangladesh. The experiment was laid out in randomized complete block design with six replications, comprising five different dates of sowing viz. November 5, November 15, November 25, December 5 and December 15. Results reveal that the tallest plant, leaf area index, total dry matter, and crop growth rate were observed in November 25 sown crop and leaf area index, total dry matter and crop growth rate were higher at booting, grain filling, and tillering stages of the crop. Maximum effective tillers hill-1 (3.49), spikes m-2, (311), number of grains spike-1 (42.20) and 1000-grain weight (52.10 g) were produced by November 25 sown crop exhibited the highest grain (4.30 t ha-1) and straw yield (4.94 t ha-1) as well as harvest index (46.88%) of the crop. Lowest performance was observed both in early (November 5) and late sown crop (December 15). The overall results indicated that November 25 sown crop showed better performance in respect of growth and yield of wheat under charland ecosystem of Bangladesh.J. Bangladesh Agril. Univ. 14(2): 147-154, December 2016


1991 ◽  
Vol 27 (4) ◽  
pp. 397-405 ◽  
Author(s):  
I. A. M. Yunusa ◽  
N. A. Gworgwor

SUMMARYTwo tropical and one temperate genotypes of maize were grown during the cool dry winter seasons in northern Nigeria. The tall tropical genotypes produced a greater leaf area index and more above-ground dry matter, and so had a higher crop growth rate, than the dwarf temperate genotype. However, the early flowering temperate genotype yielded more grain than the late flowering tropical genotypes. Although the initial low winter temperatures prolonged the preflowering growth period in the tropical genotypes, the terminal high temperatures hastened maturity and were associated with poor grain filling.Maíz de temporada seca en Nigeria


2019 ◽  
Vol 11 (18) ◽  
pp. 5086 ◽  
Author(s):  
Libing Song ◽  
Jiming Jin ◽  
Jianqiang He

In this study, we investigated the effects of water stress on the growth and yield of summer maize (Zea mays L.) over four phenological stages: Seedling, jointing, heading, and grain-filling. Water stress treatments were applied during each of these four stages in a water-controlled field in the Guanzhong Plain, China between 2013 and 2016. We found that severe water stress during the seedling stage had a greater effect on the growth and development of maize than stress applied during the other three stages. Water stress led to lower leaf area index (LAI) and biomass owing to reduced intercepted photosynthetically active radiation (IPAR) and radiation-use efficiency (RUE). These effects extended to the reproductive stage and eventually reduced the unit kernel weight and yield. In addition, the chlorophyll content in the leaf remained lower, even though irrigation was applied partially or fully after the seedling stage. Severe and prolonged water stress in maize plants during the seedling stage may damage the structure of the photosynthetic membrane, resulting in lower chlorophyll content, and therefore RUE, than those in the plants that did not experience water stress at the seedling stage. Maize plants with such damage did not show a meaningful recovery even when irrigation levels during the rest of the growth period were the same as those applied to the plants not subjected to water stress. The results of our field experiments suggest that an unrecoverable yield loss could occur if summer maize were exposed to severe and extended water stress events during the seedling stage.


1989 ◽  
Vol 40 (3) ◽  
pp. 497 ◽  
Author(s):  
CWL Henderson

The relationships between soil penetration resistance and the growth and yield of wheat were examined for a range of tillage and compaction experiments conducted on earthy sands near Geraldton, W.A. Overall, a single index of penetration resistance explained around 50% of the growth and yield variation, across sites and seasons. Equations using this index showed good potential for predicting the impact of various tillage and traffic practices on wheat yield.


2014 ◽  
Vol 47 (1) ◽  
pp. 107-114
Author(s):  
Z. Fooladivanda ◽  
M. Hassanzadehdelouei ◽  
N. Zarifinia

ABSTRACT Water stress is known as the major threat to reduced growth and yield of plants in arid and semi-arid regions. Potassium is one of the indicators of plant responses to water stress. To evaluate the impact of water stress and levels of potassium on yield and yield components of two varieties of mung bean (Vigna radiata) (promising lines VC6172 and Indian), an experiment in the form of split factorial, based on randomized complete block design with three replicates was conducted in 2011, at the research farm of Safi-Abad Dezfool, Iran (latitude 32°16’ N, longitude 48°26’ E and altitude 82.9 m above sea level) .Water stress in three levels: irrigation at 120 (no stress), 180 (moderate stress) and 240 (severe stress) mm evaporation from pan, were allocated to the main plots and potassium fertilizer at three levels (0, 90, 180 kg /ha) and two varieties of mung bean (promising line VC6172 and Indian) were allotted to the sub-plots. Results showed that water stress and potassium fertilizer significantly affect all traits. The highest grain yield (2093 kg /ha) was obtained from no stress treatment in the case of 180 kg /ha potassium. Total dry matter, number of pods and grain yield, were significantly different between the two varieties. The interaction between fertilizer and variety, on dry matter and grain yield and the interaction between irrigation and variety, on dry matter were significant. We conclude that use of potassium fertilizer can reduce the adverse effects of water stress.


1995 ◽  
Vol 46 (1) ◽  
pp. 61 ◽  
Author(s):  
T Tangpremsri ◽  
S Fukai ◽  
KS Fischer

From 47 S2 lines which had been extracted from a random mated population of sorghum, eight lines for a glasshouse experiment and four lines for a field experiment were divergently selected for variation in osmotic adjustment, and were grouped into two, High and Low osmotic adjustment (OA). Both the glasshouse and field experiments examined whether osmotic adjustment modified the plants' response to soil water deficit and also whether grain sink demand for assimilates, varied by removal of 50% spikelets, affected osmotic adjustment. In each experiment, there were well-watered control and water stress treatments. In both experiments, the dawn osmotic potential in the High OA group was always lower than in the Low OA group under water limiting conditions, and the difference was significant after anthesis. The difference in osmotic potential was about 0.1 MPa in the field and up to 0.25 MPa in the glasshouse. In the glasshouse experiment, removal of 50% spikelets at anthesis significantly decreased osmotic potential during grain filling, suggesting that osmotic adjustment is influenced by the availability of assimilates in the leaves. Under well-watered conditions, the two groups behaved very similarly in terms of maximum leaf area, green leaf area retention during grain filling, total dry matter production, grain yield and grain number in both experiments. Under water-limiting conditions, the High OA group produced larger maximum leaf area and had better leaf retention during grain filling. Despite similar water use, total dry matter was also significantly higher in the High OA group though the difference was small. Grain number was also greater in this group in both experiments, whereas grain yield was significantly higher in the High OA group in the field, but not in the glasshouse where severe water stress developed more rapidly. It is concluded that the adverse effect of water stress can be reduced by adopting sorghum genotypes with high osmotic adjustment. However, selection for high osmotic adjustment needs to ensure that osmotic adjustment is not solely due to small head size.


1969 ◽  
Vol 9 (37) ◽  
pp. 196 ◽  
Author(s):  
MJ Fisher

At Katherine, N.T., swards of Townsville lucerne (Stylosanthes humilis H.B.K.) were sown in late November and late December, 1964, and sampled every two weeks during the growing season. At each harvest the dry matter, nitrogen, and phosphorus yields of stem, leaf and petiole, inflorescence, unshed pods, shed leaf, and shed pods were determined. Crop growth rates and net assimilation rates (leaf weight basis, ELW), were derived for both plantings and compared with calculated soil water storage. Drought in January and February restricted growth during the vegetative phase, but rapid growth resumed when water stress was relieved by rain in March. Maximum dry matter yield (5400 lb an acre) and mean crop growth rate (42.3 lb an acre a day) for the November sowing were similar to those measured for Townsville lucerne at Katherine and elsewhere. Maximum crop growth rates (250 and 110 lb an acre a day for the November and December sowings respectively) appear to be about the same as those recorded in the field for subterranean clover. The strong influence of water stress on growth was emphasized by the close relationship demonstrated between ELW and calculated soil water storage. Uptake of nitrogen and phosphorus was restricted during water stress and both were redistributed to reproductive parts of the plant during flowering and seeding, nitrogen more readily than phosphorus. Nitrogen and phosphorus contents (1.9-2.0 per cent N and 0.70-0.75 per cent P) were lower than those recorded for other tropical and temperate pasture legumes. The implications of the low phosphorus contents of Townsville lucerne as cattle feed are discussed.


1991 ◽  
Vol 42 (5) ◽  
pp. 759 ◽  
Author(s):  
T Tangpremsri ◽  
S Fukai ◽  
KS Fischer ◽  
RG Henzell

Two sets containing large numbers (23 and 47 entries) of sorghum genotypes were grown in the glasshouse to examine the effect of osmotic adjustment on water extraction, dry matter growth and grain yield. Water stress was developed in two periods, one before and one after anthesis. The results were similar in the two experiments despite a large difference in the genetic background of the plant material. Since osmotic potential did not differ significantly among genotypes before water stress was induced, osmotic potential obtained under stress was used directly to indicate the genotype's ability to adjust osmotically. Osmotic adjustment was positively associated with green leaf area retention during grain filling and to root length density at 70 cm depth. Genotypes with high osmotic adjustment used more water during the second drying period. As a result, total dry matter was well related to osmotic adjustment during grain filling, but grain yield was negatively associated with osmotic adjustment in one experiment and not significantly related in the other. When comparison was made for lines which had similar leaf water potential during early stages of growth but which differed in osmotic adjustment during grain filling, there was still a positive effect of osmotic adjustment on total dry matter. This suggests that the positive effect was not caused by large plants extracting more water during early stages of growth, but was due to the difference in line's ability to extract water during grain filling.


1987 ◽  
Vol 27 (1) ◽  
pp. 87 ◽  
Author(s):  
MDA Bolland

In 2 experiments on sandy soil near Esperance, W. A., superphosphate and Duchess (Queensland) apatite rock phosphate were either left on the soil surface after application (topdressed) or incorporated into the top 10 cm of the soil with a rotary hoe (incorporated). One experiment was on Fleming gravelly sand which had a greater capacity to adsorb phosphorus than did the deep yellow sand (Gibson sand) used in the other experiment. Dry matter or seed yield of subterranean clover and phosphorus content of dry herbage or seed were used as indicators of the effectiveness of the phosphorus treatments. Compared with topdressed superphosphate, incorporation of superphosphate did not greatly influence its effectiveness on the Gibson soil, but reduced its effectiveness by about 20% on the Fleming soil. Relative to topdressed rock phosphate, incorporation of rock phosphate almost doubled its effectiveness on the Fleming soil, and improved its effectiveness by about 1.5 times on the Gibson soil. Superphosphate was the more effective fertiliser. Relative to topdressed superphosphate, the effectiveness of topdressed and incorporated Duchess rock phosphate, respectively, was about 15 and 30% on the Fleming soil, and about 25 and 40% on the Gibson soil. There was no evidence of any leaching of phosphorus from Duchess rock phosphate from the 0-10 cm layer of either soil, nor of superphosphate on the Fleming soil. However, on the Gibson soil, there was some leaching of superphosphate to below 10cm, but not below 20 cm.


Sign in / Sign up

Export Citation Format

Share Document