Response of defoliated swards of subterranean clover and yellow serradella to superphosphate applications

1991 ◽  
Vol 31 (6) ◽  
pp. 777
Author(s):  
MDA Bolland

The effect of superphosphate applications (0, 25, 50, 75, 100 and 125 kg P/ha to the soil surface) on the dry matter (DM) herbage production of dense swards of subterranean clover (Trifolium subterraneum cv. Junee) and yellow serradella (Ornithopus compressus cv. Tauro) was measured in a field experiment on deep, sandy soil in south-western Australia. The swards were defoliated with a reel mower at weekly intervals from 88 to 158 days after sowing, to a height of 2 cm for the first 9 cuts, 4 cm for the tenth cut and 5 cm for the eleventh cut. Yellow serradella was more productive than subterranean clover. Consequently, for the relationship between yield and the level of phosphorus (P) applied, yellow serradella supported larger maximum yields and required less P than subterranean clover, to produce the same DM herbage yield. Maximum yields of yellow serradella were 12-40% larger. To produce 70% of the maximum yield for yellow serradella at each harvest, yellow serradella required about 50% less P than subterranean clover. However, when yields were expressed as a percentage of the maximum yield measured for each species at each harvest, the relationship between yield and the level of P applied was similar for both species, and they had similar P requirements.

2007 ◽  
Vol 47 (8) ◽  
pp. 927 ◽  
Author(s):  
M. D. A. Bolland ◽  
I. F. Guthridge

For the first time, we quantified pasture dry matter (DM) responses to applied fertiliser nitrogen (N) for intensively grazed, rain-fed, dairy pastures on sandy soils common in the Mediterranean-type climate of south-western Australia. The pastures are composed of subterranean clover (Trifolium subterraneum L.) and annual and Italian ryegrass (Lolium rigidum Gaud. and L. multiflorum Lam.). Six rates of N, as urea (46% N), were applied to 15 m by 15 m plots four times during 2002 and after each of the first 5–7 grazings in 2003 and 2004, throughout the typical April–October growing season. Total rates of N applied in the first year of the experiments were 0, 60, 120, 160, 200 and 320 kg N/ha, which were adjusted in subsequent years as detailed in the ‘Materials and methods’ section of this paper. The pastures in the experiments were rotationally grazed, by starting grazing when ryegrass plants had 2–3 leaves per tiller. The amount of pasture DM on each plot was measured before and after each grazing and was then used to estimate the amount of pasture DM consumed by the cows at each grazing for different times during the growing season. Linear increases (responses) of pasture DM to applied N occurred throughout the whole growing season when a total of up to 320 kg N/ha was applied in each year. No maximum yield plateaus were defined. Across all three experiments and years, on average in each year, a total of ~5 t/ha consumed DM was produced when no N was applied and ~7.5 t/ha was produced when a total of 200 kg N/ha was applied, giving ~2.5 t/ha increase in DM consumed and an N response efficiency of ~12.5 kg DM N/kg applied. As more fertiliser N was applied, the proportion of ryegrass in the pasture consistently increased, whereas clover content decreased. Concentrations of nitrate-N in the DM consistently increased as more N was applied, whereas concentrations of total N, and, therefore, concentration of crude protein in the DM, either increased or were unaffected by applied N. Application of N had no effect on concentrations of other mineral elements in DM and on dry matter digestibility and metabolisable energy of the DM. The results were generally consistent with findings of previous pasture N studies for perennial and annual temperate and subtropical pastures. We have shown that when pasture use for milk production has been maximised in the region, it is profitable to apply fertiliser N to grow extra DM consumed by dairy cows; conversely, it is a waste of money to apply N to undergrazed pastures to produce more unused DM.


Author(s):  
G. Hall

Abstract A description is provided for Phytophthora clandestina. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Trifolium subterraneum. DISEASE: Root rot of subterranean clover; a facultatively necrotrophic plant pathogen. In field plants, black necrotic lesions develop 1-4 cm below the soil surface extending into the stele and causing orange-brown to brown tissue discoloration. Dry matter can be reduced by 71% (69, 5030). GEOGRAPHICAL DISTRIBUTION: Australasia & Oceania; Australia (NSW, WA, Vic.) TRANSMISSION: Presumably by zoospores released in moist soil. Oospores may act as perennating structures.


1987 ◽  
Vol 27 (1) ◽  
pp. 87 ◽  
Author(s):  
MDA Bolland

In 2 experiments on sandy soil near Esperance, W. A., superphosphate and Duchess (Queensland) apatite rock phosphate were either left on the soil surface after application (topdressed) or incorporated into the top 10 cm of the soil with a rotary hoe (incorporated). One experiment was on Fleming gravelly sand which had a greater capacity to adsorb phosphorus than did the deep yellow sand (Gibson sand) used in the other experiment. Dry matter or seed yield of subterranean clover and phosphorus content of dry herbage or seed were used as indicators of the effectiveness of the phosphorus treatments. Compared with topdressed superphosphate, incorporation of superphosphate did not greatly influence its effectiveness on the Gibson soil, but reduced its effectiveness by about 20% on the Fleming soil. Relative to topdressed rock phosphate, incorporation of rock phosphate almost doubled its effectiveness on the Fleming soil, and improved its effectiveness by about 1.5 times on the Gibson soil. Superphosphate was the more effective fertiliser. Relative to topdressed superphosphate, the effectiveness of topdressed and incorporated Duchess rock phosphate, respectively, was about 15 and 30% on the Fleming soil, and about 25 and 40% on the Gibson soil. There was no evidence of any leaching of phosphorus from Duchess rock phosphate from the 0-10 cm layer of either soil, nor of superphosphate on the Fleming soil. However, on the Gibson soil, there was some leaching of superphosphate to below 10cm, but not below 20 cm.


1986 ◽  
Vol 26 (6) ◽  
pp. 675 ◽  
Author(s):  
MDA Bolland

In 1984, the efficiency with which an early- and a late-flowering yellow serradella (cv. Pitman and strain DP4 respectively) and a subterranean clover (cv. Seaton Park) utilise phosphorus (P) from superphosphate was compared on a deep sandy soil near Esperance, W.A. Phosphorus applications ranged from 0 to 90 kg/ha P. For each legume there was an approximately linear relationship between the amount of P applied and either the yield of dry herbage and seed, or the P content of dry herbage. The efficiency with which each legume utilised applied P (kg/ha) was determined by calculating the slope of the relationships between dry matter production, or phosphorus content of this dry matter, and the amount of phosphorus applied; this varied according to the growth stage at which the legumes were sampled. Strain DP4 utilised P more efficiently to produce dry herbage, and Seaton Park to produce seed. Pitman was the least efficient at utilising P for dry herbage production in September, and Seaton Park in early October. For dry herbage production in September and early October, the relationship between yield and P content was similar for all 3 legumes, and yield depended on the amount of P present in the herbage. For each legume, the rate of phosphorus applied had no effect on seedling emergence, the period between sowing and commencement of flowering, senescence or the weight per seed.


1978 ◽  
Vol 29 (2) ◽  
pp. 225 ◽  
Author(s):  
PG Ozanne ◽  
A Petch

Three crop species, sand-plain lupin, Lupinus cosentinii L. (cv. Chapman), narrow-leaf lupin, L. angustifolius L. (cv. Uniharvest), and wheat, Triticum aestivium (cv. Gamenya), were grown under field conditions in soil fertilized then cultivated to 10 cm depth. Two annual pasture species, subterranean clover, Trifolium subterraneum L. (cv. Daliak), and Wimmera ryegrass, Lolium rigidum Gaud. (cv. Wimmera), were also grown in the field both with and without cultivation. All species were fertilized with seven levels of phosphate broadcast on the soil surface before cultivation. The amount of phosphate which produced 90% of maximum yield depended on species and cultivation practice: wheat required 98 kg phosphorus/ha; L. angustifolius, 65 kg/ha; L. cosentinii, 42 kg/ha; subterranean clover, after cultivation, 49 kg/ha; subterranean clover, not cultivated, 28 kg/ha; Wimmera ryegrass after cultivation, 40 kg/ha; Wimmera ryegrass, not cultivated, 18 kg/ha. All species except wheat required less current phosphate in this experiment than they did 3 years earlier on the same site in virgin soil. Cultivation changed the distribution of soil phosphate, and the roots of the pasture species followed the phosphate distribution.


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


Soil Research ◽  
2000 ◽  
Vol 38 (3) ◽  
pp. 735 ◽  
Author(s):  
Robert Summers ◽  
Martin Clarke ◽  
Tim Pope ◽  
Tim O'Dea

Bauxite residue from alumina refining was used to coat granules of single superphosphate to reduce the leaching of phosphorus in coarse, sandy soils for pastures in high rainfall areas of south-western Australia (>800 mm annual average). The impact of coating the superphosphate on the leaching of phosphorus was measured in a glasshouse experiment and the effectiveness of the fertiliser using dry herbage yield of subterranean clover (Trifolium subterraneum) was measured in a field experiment. The glasshouse experiment measured the effect of coating the superphosphate with bauxite residue at 0, 5, 10, 15, 20, 25, 30, 35, and 40% by weight. A coating of 25% (by weight) was chosen for the field experiment. In the glasshouse experiment, the coated granules were applied to columns of soil, where subterranean clover was grown under leaching conditions. A coating of 30%, by weight, reduced leaching of single superphosphate by about half. Increasing the coating of bauxite residue also increased the phosphorus uptake and increased the plant growth. In the field trial, the effectiveness of single superphosphate with a bauxite residue coating of 25% by weight was increased on average by 100% in Year 1, 303% in Year 2, and 158% in Year 3, relative to freshly applied single superphosphate. The bauxite residue coating also increased the phosphorus content of the herbage in a similar manner to the increases in yield. Limited soil phosphorus tests showed only minor increases in the residues of phosphorus where the superphosphate had been coated with bauxite residue.


1998 ◽  
Vol 49 (1) ◽  
pp. 53 ◽  
Author(s):  
C. Tang ◽  
L. Barton ◽  
C. Raphael

The capacity of subterranean clover (Trifolium subterraneum L. cv. Clare), medic (Medicago murex Willd. cv. Zodiac), serradella (Ornithopus sativus Brot. line SP1/13), biserrula (Biserrula pelecinus L. line Mor99), and woolly clover (Trifolium tomentosum L.) to acidify soil under N2 fixation was compared in a pot experiment using a poorly buffered sandy soil. The amount of acid produced per kg shoot dry matter (specific acid production) varied betweefin species and with growth stages, ranging from 44 to 128 cmol/kg shoot. Subterranean clover and serradella acidied soil to a greater extent than woolly clover and medic, whereas biserrula acidified soil least. Irrespective of pasture species and growth stage, specific acid production correlated well with concentrations of excess cations and calcium in shoots. Furthermore, total excess cation, ash alkalinity, and calcium in shoots were all good indicators of total acid production across all of the species.


1997 ◽  
Vol 48 (5) ◽  
pp. 683 ◽  
Author(s):  
B. S. Dear ◽  
P. S. Cocks

Subterranean clover seedling numbers and growth in swards containing 1 of 5 perennial pasture species [phalaris (Phalaris aquatica) cv. Sirolan, cocksfoot (Dactylis glomerata) cv. Currie, lucerne (Medicago sativa) cv. Aquarius, wallaby grass (Danthonia richardsonii) cv. Taranna, and lovegrass (Eragrostis curvula) cv. Consol] were compared with those in typical annual pastures and pure clover swards in the wheatbelt of eastern Australia. Presence of a perennial species or the volunteer annual grass (Eragrostis cilianensis) increased the rate of drying of the soil surface (0–5 cm) after late February and May rain, compared with subterranean clover swards. Perennials differed in the rate they dried the soil surface, with the more summer-active lucerne and consul lovegrass drying the profile more rapidly than phalaris. The amount of water in the surface 5 cm, 6 days after the rainfall event on 27–28 February, was strongly negatively correlated (r = –0·75, P < 0·01) with the amount of green perennial biomass, but not related to standing dead material or surface residues. Where perennials were present, a smaller proportion (2–4%) of the clover seed pool produced seedlings in response to late summer rain, compared with pure clover swards (18%). A higher proportion of the seed pool produced seedlings (19–36%) following rain in late autumn but there was no difference between species. The more summer-active perennials (cocksfoot, danthonia, and lucerne) markedly depressed the survival of emerged clover seedlings following both germinations. Of the seedlings that emerged in early March, the proportion remaining by 29 March was 57% in phalaris, 21% in lucerne, 13% in danthonia, and 1% in cocksfoot, compared with a 78% increase in seedlings in pure subterranean clover swards. By 15 May, all perennials had <2 clover seedlings/m2 surviving, compared with 37 in the annual pasture and 964 plants/m2 in pure subterranean clover. Following the May germination, the highest proportion of emerged seedlings surviving until 29 May was in the phalaris swards (40%) and least in the cocksfoot and danthonia swards (2–4%). Presence of a perennial or annual grass decreased (P < 0·05) relative water content of clover seedlings on 15 March from 74% in pure clover swards, to 48% in annual pasture, 34% in phalaris, and 29% in lucerne swards. Clover seedlings growing in pure subterranean swards on 15 March (17 days after germinating rain) were 4 times larger than those in lucerne and twice as large as those in either phalaris or annual pasture. Seed size did not differ between treatments, but available mineral soil nitrogen was significantly higher (P < 0·001) in pure subterranean clover swards (32 mg N/g) compared with perennials (3–13 mg N/g). Strategies such as heavy grazing in late summer to reduce green biomass of the perennials or sowing the perennials at lower densities may reduce the adverse effects that perennials have on subterranean clover seedlings in these drier environments.


2007 ◽  
Vol 58 (2) ◽  
pp. 123 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral ◽  
J. M. Virgona ◽  
A. D. Swan ◽  
B. A. Orchard ◽  
...  

The effect of the density of 3 perennial species, phalaris (Phalaris aquatica L.), wallaby grass (Austrodanthonia richardsonii Kunth), and lucerne (Medicago sativa L.), on seed set, regeneration, and the relative competitiveness of 3 cultivars of subterranean clover (Trifolium subterraneum L.) was examined in 2 environments in the south-eastern Australian wheatbelt. Seed yields of subterranean clover were inversely related to perennial density at both sites over the first 2 years, the relationship varying with perennial species. Phalaris depressed the seed yield of clover more than lucerne and wallaby grass in the second and third year at equivalent densities. Clover seed yield was positively related to clover herbage yield in late spring at both sites, and inversely related to perennial herbage yield. Clover seed yield displayed an increasing linear relationship with the proportion of light reaching the clover understorey in spring, which in turn was inversely related to perennial density and perennial herbage yield. Clover seedling regeneration in mixed swards in autumn was positively related to the size of the summer seed bank, but negatively related to perennial density. Clover seedling survival following a premature germination at Kamarah was inversely correlated to the density of phalaris and lucerne in the sward. The relative competitiveness of the 3 subterranean clover cultivars varied between sites, with climatic conditions (rainfall and growing-season length) having a greater effect on the relative cultivar performance than companion perennial species or density. The later maturing subterranean clover cv. Goulburn became the dominant cultivar at the wetter site, constituting 72% of the seed bank, but declined to only 3–8% of the seed bank at the drier site. The proportion of the early flowering cultivar Dalkeith in the seed bank increased over time at the drier site and was highest (53%) in plots with the highest perennial density. We concluded that although perennial pasture species will depress clover seed yield and subsequent regeneration, these effects could be minimised by reducing perennial densities and exploiting variations in competitiveness between perennial species as identified in this study. Sowing earlier maturing subterranean clover cultivars would only be an advantage in increasing clover content in low-rainfall environments. The findings suggest that clover seed reserves and regeneration could also be increased by using grazing management to reduce the level of shading of clover by perennials, a factor associated with reduced clover seed yield.


Sign in / Sign up

Export Citation Format

Share Document