Phytophthora clandestina. [Descriptions of Fungi and Bacteria].

Author(s):  
G. Hall

Abstract A description is provided for Phytophthora clandestina. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Trifolium subterraneum. DISEASE: Root rot of subterranean clover; a facultatively necrotrophic plant pathogen. In field plants, black necrotic lesions develop 1-4 cm below the soil surface extending into the stele and causing orange-brown to brown tissue discoloration. Dry matter can be reduced by 71% (69, 5030). GEOGRAPHICAL DISTRIBUTION: Australasia & Oceania; Australia (NSW, WA, Vic.) TRANSMISSION: Presumably by zoospores released in moist soil. Oospores may act as perennating structures.

1991 ◽  
Vol 31 (6) ◽  
pp. 777
Author(s):  
MDA Bolland

The effect of superphosphate applications (0, 25, 50, 75, 100 and 125 kg P/ha to the soil surface) on the dry matter (DM) herbage production of dense swards of subterranean clover (Trifolium subterraneum cv. Junee) and yellow serradella (Ornithopus compressus cv. Tauro) was measured in a field experiment on deep, sandy soil in south-western Australia. The swards were defoliated with a reel mower at weekly intervals from 88 to 158 days after sowing, to a height of 2 cm for the first 9 cuts, 4 cm for the tenth cut and 5 cm for the eleventh cut. Yellow serradella was more productive than subterranean clover. Consequently, for the relationship between yield and the level of phosphorus (P) applied, yellow serradella supported larger maximum yields and required less P than subterranean clover, to produce the same DM herbage yield. Maximum yields of yellow serradella were 12-40% larger. To produce 70% of the maximum yield for yellow serradella at each harvest, yellow serradella required about 50% less P than subterranean clover. However, when yields were expressed as a percentage of the maximum yield measured for each species at each harvest, the relationship between yield and the level of P applied was similar for both species, and they had similar P requirements.


Author(s):  
G. Hall

Abstract A description is provided for Pythium erinaceum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Lupinus sp., Triticum aestivum. DISEASE: Possibly associated with a root rot complex of wheat; a facultatively necrotrophic plant pathogen. GEOGRAPHICAL DISTRIBUTION: Australasia & Oceania; Australia (NSW), New Zealand. TRANSMISSION: Presumably by zoospores in moist soil. Oospores may act as perennating structures.


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


1999 ◽  
Vol 50 (8) ◽  
pp. 1469 ◽  
Author(s):  
S. Simpfendorfer ◽  
T. J. Harden ◽  
G. M. Murray

The interaction between 29 isolates of Rhizobium and the in vitro growth of 3 strains of Phytophthora clandestina was investigated to determine the potential of these bacteria as biological control agents against root rot of subterranean clover (Trifolium subterraneum L.). The biological control activity of Rhizobium on the severity of root disease in seedlings was also investigated under glasshouse conditions. Thirteen of the 29 Rhizobium isolates caused significant reductions in the hyphal growth of the 3 P. clandestina isolates examined. Inoculation of seedlings with Rhizobium trifolii reduced the severity of root disease by 14–58% with corresponding increases in dry matter production of 20–73%. These results indicate that Rhizobium species have potential as biological control agents against the root rot of T. subterraneum seedlings caused by P. clandestina.


1998 ◽  
Vol 49 (1) ◽  
pp. 53 ◽  
Author(s):  
C. Tang ◽  
L. Barton ◽  
C. Raphael

The capacity of subterranean clover (Trifolium subterraneum L. cv. Clare), medic (Medicago murex Willd. cv. Zodiac), serradella (Ornithopus sativus Brot. line SP1/13), biserrula (Biserrula pelecinus L. line Mor99), and woolly clover (Trifolium tomentosum L.) to acidify soil under N2 fixation was compared in a pot experiment using a poorly buffered sandy soil. The amount of acid produced per kg shoot dry matter (specific acid production) varied betweefin species and with growth stages, ranging from 44 to 128 cmol/kg shoot. Subterranean clover and serradella acidied soil to a greater extent than woolly clover and medic, whereas biserrula acidified soil least. Irrespective of pasture species and growth stage, specific acid production correlated well with concentrations of excess cations and calcium in shoots. Furthermore, total excess cation, ash alkalinity, and calcium in shoots were all good indicators of total acid production across all of the species.


1997 ◽  
Vol 48 (5) ◽  
pp. 683 ◽  
Author(s):  
B. S. Dear ◽  
P. S. Cocks

Subterranean clover seedling numbers and growth in swards containing 1 of 5 perennial pasture species [phalaris (Phalaris aquatica) cv. Sirolan, cocksfoot (Dactylis glomerata) cv. Currie, lucerne (Medicago sativa) cv. Aquarius, wallaby grass (Danthonia richardsonii) cv. Taranna, and lovegrass (Eragrostis curvula) cv. Consol] were compared with those in typical annual pastures and pure clover swards in the wheatbelt of eastern Australia. Presence of a perennial species or the volunteer annual grass (Eragrostis cilianensis) increased the rate of drying of the soil surface (0–5 cm) after late February and May rain, compared with subterranean clover swards. Perennials differed in the rate they dried the soil surface, with the more summer-active lucerne and consul lovegrass drying the profile more rapidly than phalaris. The amount of water in the surface 5 cm, 6 days after the rainfall event on 27–28 February, was strongly negatively correlated (r = –0·75, P < 0·01) with the amount of green perennial biomass, but not related to standing dead material or surface residues. Where perennials were present, a smaller proportion (2–4%) of the clover seed pool produced seedlings in response to late summer rain, compared with pure clover swards (18%). A higher proportion of the seed pool produced seedlings (19–36%) following rain in late autumn but there was no difference between species. The more summer-active perennials (cocksfoot, danthonia, and lucerne) markedly depressed the survival of emerged clover seedlings following both germinations. Of the seedlings that emerged in early March, the proportion remaining by 29 March was 57% in phalaris, 21% in lucerne, 13% in danthonia, and 1% in cocksfoot, compared with a 78% increase in seedlings in pure subterranean clover swards. By 15 May, all perennials had <2 clover seedlings/m2 surviving, compared with 37 in the annual pasture and 964 plants/m2 in pure subterranean clover. Following the May germination, the highest proportion of emerged seedlings surviving until 29 May was in the phalaris swards (40%) and least in the cocksfoot and danthonia swards (2–4%). Presence of a perennial or annual grass decreased (P < 0·05) relative water content of clover seedlings on 15 March from 74% in pure clover swards, to 48% in annual pasture, 34% in phalaris, and 29% in lucerne swards. Clover seedlings growing in pure subterranean swards on 15 March (17 days after germinating rain) were 4 times larger than those in lucerne and twice as large as those in either phalaris or annual pasture. Seed size did not differ between treatments, but available mineral soil nitrogen was significantly higher (P < 0·001) in pure subterranean clover swards (32 mg N/g) compared with perennials (3–13 mg N/g). Strategies such as heavy grazing in late summer to reduce green biomass of the perennials or sowing the perennials at lower densities may reduce the adverse effects that perennials have on subterranean clover seedlings in these drier environments.


1980 ◽  
Vol 31 (2) ◽  
pp. 297 ◽  
Author(s):  
AW Kellock ◽  
LL Stubbs ◽  
DG Parbery

Fusarium avenaceurn (Corda ex Fr.) Sacc. was shown for the first time to be carried in the hilum of subterranean clover (Trifolium Subterraneum L.) seed. Scanning electron microscopy and thin-section techniques showed that the fungus occurred only as dormant mycelium in parenchyma cells of funicle scar tissue. It emerged from these tissues after a 12 h incubation at 24�C and in 48 h penetrated internal parts of the seed through the hilum fissure. After 21 days on moist blotting paper, seedlings grown from infected seed developed lesions on their roots similar to those of root-rot of subterranean clover in the field. Fusarium spp. were also detected in the hilum of seeds of white (T. repens L.) and strawberry (T. fragiferum L.) clover and barrel medic (M. truncatula L.). It was demonstrated experimentally that all parts of the burr, incl~tding the funicle, became infected with F. avenaceuni when subterranean clover plants grown from healthy seed in pasteurized soil buried their burrs in soil inoculated with the fungus. Use of optical brighteners failed to trace seed infection because the compounds, although absorbed by the pathogen in culture, were not translocated.


2001 ◽  
Vol 41 (2) ◽  
pp. 169 ◽  
Author(s):  
Y. J. Ru ◽  
J. A. Fortune

The nutritive value of 26 cultivars of dry, mature subterranean clover was evaluated at Shenton Park, Perth, Western Australia. The cultivars were divided into 3 maturity groups according to flowering time and each cultivar was sown in blocks comprising 4 replicates. The plots were grazed by sheep at 2-week intervals during the growing season. Dry mature plant material and soil were sampled in summer to examine the effect of grazing and cultivar on seed yield and nutritive value of feed residues. Cultivars heavily grazed in spring had a low herbage mass. There was no difference in seed yield and seed weight between heavily and lightly grazed cultivars. Dry matter digestibility and mineral content of dry residues was inconsistent for the 2 grazing treatments. The dry matter digestibility of dry, mature subterranean clover ranged from 40 to 56%, with a wide range of crude fibre, nitrogen and mineral content for the 26 cultivars. While most minerals in the dry residues were above the requirement for sheep, 7 cultivars had a zinc content less than the maintenance requirement for sheep. There was an imbalance for all cultivars in calcium: phosphorus with a range of 4–10: 1. Concurrent estimates on the yield and composition of seed indicated that seed can be resource of minerals for grazing animals in summer. Most cultivars had a seed yield over 100 g/m2 with that of 9 cultivars being over 130 g/m2. Seed was rich in nitrogen, sodium, phosphorus, potassium, magnesium, zinc and copper, and poor in sodium, calcium and manganese. However, there were no cultivars with an appropriate ratio of calcium and phosphorus. The imbalance in nitrogen and sulfur was a result of high nitrogen content with the ratio ranging from 19: 1 to 29: 1.


2001 ◽  
Vol 41 (2) ◽  
pp. 187 ◽  
Author(s):  
R. Aldaoud ◽  
W. Guppy ◽  
L. Callinan ◽  
S. F. Flett ◽  
K. A. Wratten ◽  
...  

In 1995–96, a survey of soil samples from subterranean clover (Trifolium subterraneum L.) paddocks was conducted across Victoria, South Australia, New South Wales and Western Australia, to determine the distribution and the prevalence of races of Phytophthora clandestina (as determined by the development of root rot on differential cultivars), and the association of its occurrence with paddock variables. In all states, there was a weak but significant association between P. clandestina detected in soil samples and subsequent root rot susceptibility of differential cultivars grown in these soil samples. Phytophthora clandestina was found in 38% of the sampled sites, with a significantly lower prevalence in South Australia (27%). There were significant positive associations between P. clandestina detection and increased soil salinity (Western Australia), early growth stages of subterranean clover (Victoria), mature subterranean clover (South Australia), recently sown subterranean clover (South Australia), paddocks with higher subterranean clover content (Victoria), where herbicides were not applied (South Australia), irrigation (New South Wales and Victoria), cattle grazing (South Australia and Victoria), early sampling dates (Victoria and New South Wales), sampling shortly after the autumn break or first irrigation (Victoria), shorter soil storage time (Victoria) and farmer’s perception of root rot being present (Victoria and New South Wales). Only 29% of P. clandestina isolates could be classified under the 5 known races. Some of the unknown races were virulent on cv. Seaton Park LF (most resistant) and others were avirulent on cv. Woogenellup (most susceptible). Race 1 was significantly less prevalent in South Australia than Victoria and race 0 was significantly less prevalent in New South Wales than in South Australia and Western Australia. This study revealed extremely wide variation in the virulence of P. clandestina. The potential importance of the results on programs to breed for resistance to root rot are discussed. in South Australia.


1973 ◽  
Vol 13 (64) ◽  
pp. 556
Author(s):  
DW Barrett ◽  
GW Arnold ◽  
NA Campbell

Pastures containing subterranean clover (Trifolium subterraneum) and either Vulpia spp. or Bromus rigidus as the other major species were sprayed at 0, 0.07, 0.14 and 0.21 kg a.i. ha-1 of paraquat ion between June and early October in Western Australia. Spraying removed the grasses and produced pastures containing up to 95 per cent clover. Mid-winter applications were more effective in increasing clover content than those made in spring. These changes in botanical composition were evident in the year following spraying, but were less marked. Yields of dry matter were reduced by paraquat, especially 'in the period immediately following spraying. These losses tended to decline as the growing season progressed, but at the close they were still evident on the Bromus rigidus pasture sprayed in July. Yields at the end of the subsequent season were similar on all treatments. Paraquat applied in mid-August at 0.14 kg a.i. ha-1 to both pastures produced the greatest change in botanical composition with the minimum loss of yield. The concentrations of nitrogen, phosphorus, calcium and magnesium were higher in mature herbage on paraquat treatments. Total yields of nutrients were similar between treatments because of reduced dry matter yield.


Sign in / Sign up

Export Citation Format

Share Document