Interaction between Sulfur(IV) Autoxidation Transients and Bioorganic Compounds

2004 ◽  
Vol 1 (3) ◽  
pp. 137
Author(s):  
Wanda Pasiuk-Bronikowska ◽  
Tadeusz Bronikowski ◽  
Marek Ulejczyk

Environmental Context. Sulfur dioxide has long been known as a source of acidity in precipitation and of cloud condensation nuclei, but more recently it has been shown a source of radicals highly reactive with respect to various organic compounds. These radicals are formed as intermediates wherever sulfur dioxide, oxygen, and water come into contact, such as in a sulfur dioxide polluted environment (tropospheric clouds, surface waters, soil) and in living organisms (lungs, digestive tract). This work focusses on the destructive action of such intermediates upon organic compounds essential for life (such as enzymes and vitamins). Abstract. The oxidation of sulfur dioxide in aqueous media by molecular oxygen is here exploited as a source of sulfoxy radical anions. Experimental evidence is given for the chemical interaction between these radical anions and bioorganic compounds: lysozyme (Lys), haemoglobin (Hb), and cyanocobalamin (vitamin B12). Two opposite effects are described, one leading to the elimination of sulfoxy radical anions and the other resulting in multiplication of the radicals. The former effect is due to lysozyme and haemoglobin, which behave as sulfoxy radical scavengers, whereas the latter is caused by cyanocobalamin, which actively contributes to the formation of these radicals. Possible consequences of the effects for life are briefly discussed with a view to the noxious role of tropospheric sulfur dioxide.

2021 ◽  
Author(s):  
Omid Moradi ◽  
Samira Mhdavi ◽  
Sajjad Sedaghat

Abstract Today, environmental pollutants pose a threat to human societies and all living organisms, which is why they have attracted the attention of environmental researchers. In this study, in order to remove pharmaceutical contaminants Naproxen and Amoxicillin from aqueous media with SiO2 nanoparticles based on Agar and Chitosan was investigated. The study of structural properties, physical and chemical characterization of synthesized nanocomposite was investigated by FTIR, XRD, TEM, FE-SEM, DLS and EDX analyzes. In addition, the role of parameters affecting the removal of pharmaceutical contaminants such as solution pH, contact time, contaminant concentration and temperature were studied. Nanocomposites prepared from Agar and Chitosan showed good performance in absorbing naproxen and amoxicillin. According to the studies performed to remove naproxen, the max adsorption efficiency was obtained at a concentration of 20 mg/l with an absorbent dose of 0.05 g and a pH of 8 and at an optimum temperature of 25 °C and 99% in 15 min. Also, for amoxicillin with nanocomposite prepared with an initial concentration of 20 mg/l and an adsorbent dose of 0.05 g, a time of 10 min, a temperature of 25 °C and a pH of 8, the max removal efficiency of 91.15% was obtained.


Metabolomics ◽  
2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Andrea Rios-Navarro ◽  
Mabel Gonzalez ◽  
Chiara Carazzone ◽  
Adriana Marcela Celis Ramírez

Abstract Background Microorganisms synthesize and release a large diversity of small molecules like volatile compounds, which allow them to relate and interact with their environment. Volatile organic compounds (VOCs) are carbon-based compounds with low molecular weight and generally, high vapor pressure; because of their nature, they spread easily in the environment. Little is known about the role of VOCs in the interaction processes, and less is known about VOCs produced by Malassezia, a genus of yeasts that belongs to the human skin mycobiota. These yeasts have been associated with several dermatological diseases and currently, they are considered as emerging opportunistic yeasts. Research about secondary metabolites of these yeasts is limited. The pathogenic role and the molecular mechanisms involved in the infection processes of this genus are yet to be clarified. VOCs produced by Malassezia yeasts could play an important function in their metabolism; in addition, they might be involved in either beneficial or pathogenic host-interaction processes. Since these yeasts present differences in their nutritional requirements, like lipids to grow, it is possible that these variations of growth requirements also define differences in the volatile organic compounds produced in Malassezia species. Aim of review We present a mini review about VOCs produced by microorganisms and Malassezia species, and hypothesize about their role in its metabolism, which would reveal clues about host-pathogen interaction. Key scientific concepts of review Since living organisms inhabit a similar environment, the interaction processes occur naturally; as a result, a signal and a response from participants of these processes become important in understanding several biological behaviors. The efforts to elucidate how living organisms interact has been studied from several perspectives. An important issue is that VOCs released by the microbiota plays a key role in the setup of relationships between living micro and macro organisms. The challenge is to determine what is the role of these VOCs produced by human microbiota in commensal/pathogenic scenarios, and how these allow understanding the species metabolism. Malassezia is part of the human mycobiota, and it is implicated in commensal and pathogenic processes. It is possible that their VOCs are involved in these behavioral changes, but the knowledge about this remains overlocked. For this reason, VOCs produced by microorganisms and Malassezia spp. and their role in several biological processes are the main topic in this review.


Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


Author(s):  
Lars Mohrhusen ◽  
Jessica Kräuter ◽  
Katharina Al-Shamery

The photochemical conversion of organic compounds on tailored transition metal oxide surfaces by (UV) irradiation has found wide applications ranging from the production of chemicals to the degradation of organic...


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


2020 ◽  
Vol 27 (4) ◽  
pp. 163-177
Author(s):  
Mohammad Sadegh Hesamian ◽  
Nahid Eskandari

Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body’s functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.


2003 ◽  
Vol 331 (1-2) ◽  
pp. 119-126 ◽  
Author(s):  
Munire Gokirmak ◽  
Zeki Yildirim ◽  
H. Canan Hasanoglu ◽  
Nurhan Koksal ◽  
Nihayet Mehmet

Sign in / Sign up

Export Citation Format

Share Document