Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(II) and sulfide

2009 ◽  
Vol 6 (1) ◽  
pp. 60 ◽  
Author(s):  
David Robertson ◽  
David T. Welsh ◽  
Peter R. Teasdale

Environmental context. Microbial respiration generally occurs in distinct layers within coastal sediment, producing high porewater iron or sulfide concentrations, although this layering is dramatically modified by the activities of sediment-dwelling organisms. The present study describes use of a new technique to simultaneously measure two-dimensional concentrations of porewater iron and sulfide at millimetre resolution, allowing the patchiness of patterns of microbial respiration in sediment to be clearly observed. The measurements generally supported a conceptual model predicting the effects of animal burrows and seagrass roots on the porewater iron and sulfide distributions, although the addition of organic matter provided some unexpected observations that require further investigation. Abstract. One of the most powerful predictive tools in sediment biogeochemistry is the electron acceptor layering model, which describes the order in which oxidised compounds are reduced by successions of respiring microbial populations, and how this layering is influenced by benthic macro-organism activity. However, techniques allowing convenient determination of heterogeneous distributions of reduced substances, such as iron(II) and sulfide, have been lacking. A combined diffusive gradients in thin films–diffusive equilibrium in thin films technique was used to quantitatively measure the two-dimensional iron(II) and sulfide distributions at high resolution in the vicinity of various sediment features, including macrofauna burrows, particulate organic matter and macrophyte roots. Substantial heterogeneity was observed for both analytes in all probes, especially in the vicinity of seagrass roots and particulate organic matter. Measured distributions tended to follow the general patterns predicted by the tertiary electron acceptor layering model. However, there was unexpected overlap of sulfide and iron(II) distributions at the millimetre to centimetre scale in several samples from different sediments, notably the more complex sediments containing particulate organic matter and seagrass roots. The cause of such overlap is unclear and further study is necessary to elucidate how such distributions can occur.

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Benxin Yu ◽  
Dongping Liu ◽  
Jian Wang ◽  
Yingxue Sun

Abstract Background Most particulate organic matter (POM) cannot be directly degraded in the conventional wastewater treatment, which should be transformed into dissolved organic matter (DOM) through a hydrolysis process. However, non-hydrolyzed POM in the biological treatment can limit treated efficiencies for the wastewater treatment plants (WWTPs) facilities. Hence an operational tool is indispensable for insight into removals of DOM and POM factions in the WWTP. In this study, excitation-emission matrix fluorescence spectroscopy (EEM) combined parallel factor analysis (PARAFAC), two-dimensional correlation (2D-COS) and structural equation modeling (SEM) was employed to evaluate removals of DOM and POM in a wastewater treatment plant. Results Four fluorescence components were identified in DOM and POM substances from the WWTP by EEM combined with PARAFAC, i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial byproduct-like (MBLF), and fulvic acid-like (FALF). In A2/O process, the TYLF and TRLF of DOM were removed to a larger extent than those of MBLF and FALF in anaerobic tank, while TYLF and MBLF of POM were removed to a great extent than those of TRLF and FALF in primary sedimentation and aerobic tanks. By the 2D-COS, a decreasing variation order of DOM fractions in the wastewater treatment process was UV-FALF → MBLF2 → Vis-FALF → TRLF → TYLF, while the decreasing order of POM fractions was Vis-FALF → UV-FALF → MBLF2 → TYLF → MBLF1 → TRLF. SEM revealed that TRLF and TYLF of DOM were degraded by anaerobic microorganism, and TRLF could be transformed partially into FALF. However, TRFL and TYLF of POM were discomposed by aerobic microorganism. Conclusions The 2D-COS and SEM can be practicable tools as EEM-PARAFAC for monitoring DOM and POM in the WWTP. The study could present a theoretical support to improving the retrofit of WWTP and formulating emission standards for organic pollutants.


BioScience ◽  
2020 ◽  
Vol 70 (12) ◽  
pp. 1108-1119
Author(s):  
Jennifer L Bowen ◽  
Anne E Giblin ◽  
Anna E Murphy ◽  
Ashley N Bulseco ◽  
Linda A Deegan ◽  
...  

Abstract Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


Sign in / Sign up

Export Citation Format

Share Document