Accumulation and transport of antimony and arsenic in terrestrial and aquatic plants in an antimony ore concentration area (south-west China)

2020 ◽  
Vol 17 (4) ◽  
pp. 314
Author(s):  
Ling Li ◽  
Lu Liao ◽  
Yuhong Fan ◽  
Han Tu ◽  
Shui Zhang ◽  
...  

Environmental contextPhytoremediation requires an understanding of bioconcentration and translocation processes that determine behaviour and fate of potentially toxic elements. We studied the distribution of antimony and arsenic in terrestrial and aquatic soil-plant systems in an antimony ore zone. We found that the common climbing plant Kudzu (Pueraria lobata) is suitable for phyto-stabilisation of antimony-bearing tailings, while tiger grass (Thysanolaena maxima) was able to extract antimony and arsenic from contaminated soils. AbstractAntimony (Sb) pollution is a major environmental issue in China. Many historical abandoned tailings have released high concentrations of Sb and its associated element arsenic (As) to surrounding environments. This has prompted the need to understand accumulation and translocation processes that determine the behaviour and fate of Sb and As in contaminated soil–plant systems and to identify suitable plant species for phytoremediation. Here we investigate distribution of Sb and As in terrestrial and aquatic dominant plant species and associated soils, all of which are naturally found in an Sb ore concentration area in south-west China. Total Sb and As concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS). The percentage of soluble Sb and As in the total concentrations were determined; the results showed that the basic soil environment facilitates the release of Sb and As from contaminated soils, and that Sb has higher mobility than As. Bioconcentration factor (BCF) and translocation factor (TF) were used for evaluating the ability of plants to accumulate and transport Sb and As, respectively. The results indicated that all selected plant species have the potential to tolerate high concentrations of Sb and As. Consequently, this study suggested that Pueraria lobata (PL) can be used as the preferred species for phytostabilisation of abandoned Sb-bearing tailings, given that PL has well-developed roots and lush leaf tissues and the ability to translocate Sb from roots to aboveground parts. Thysanolaena maxima (TM) is suitable for phyto-extraction of Sb and As in contaminated soils.

2021 ◽  
Vol 11 (15) ◽  
pp. 7023
Author(s):  
Vannini Andrea ◽  
Martina Grattacaso ◽  
Giulia Canali ◽  
Francesco Nannoni ◽  
Luigi Antonello Di Lella ◽  
...  

The aim of this study was to provide, for the first time, data on the concentration of potentially toxic elements (PTEs) in soils and bulbs of elephant garlic (Allium ampeloprasum L.) cultivated in Valdichiana, a traditional agricultural area of Tuscany, Italy. Bulbs of elephant garlic and soil samples were collected in four cultivation fields and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine the concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, U, V, Zn. The concentrations of these PTEs in bulbs and cultivation soils were used to calculate geochemical, ecological and health risk indices. The results of this study suggest that, although bulbs of elephant garlic from the Valdichiana area may present slightly high concentrations of Cd, Ni and Pb, the associated health risk based on the daily intake is absolutely negligible. Cultivation soils had somewhat high Cu concentrations probably due to the diffuse use of Cu-based products in agriculture, but showed overall a very low ecological risk.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 465 ◽  
Author(s):  
Diego Luna ◽  
Marta López-Alonso ◽  
Yolanda Cedeño ◽  
Lucas Rigueira ◽  
Víctor Pereira ◽  
...  

This study was designed to evaluate the influence of type of blood sample (serum or plasma) on essential and toxic element analysis in cattle. Paired plasma and serum samples (n = 20) were acid digested, and the concentrations of As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn. Mo, Ni, P, Pb, Sb, Se, Sr and Zn were determined by inductively coupled plasma mass spectrometry (ICP-MS). The study findings indicate that plasma and serum samples appear suitable and interchangeable for the determination of most of the essential and toxic elements in blood in cattle. The only exceptions are Cu and Se, the concentrations of which were significantly lower (40.9 and 29.9% respectively) in serum than in plasma. Some of the Cu in blood samples from bovine ruminants is known to be sequestered during clotting. However, further research on Se in ruminants and other animal species is warranted. Finally, the significantly higher Mn (9.9%) concentrations in serum than in plasma may have been caused by haemolysis of some samples. Special attention should be paid to preventing haemolysis of samples during collection and processing, in order to prevent overestimation of elements present at high concentrations inside erythrocytes (i.e., Fe, Mn and Zn).


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 595 ◽  
Author(s):  
Radulescu ◽  
Stihi ◽  
Ion ◽  
Dulama ◽  
Stanescu ◽  
...  

This study is the first attempt to decipher the effect of particulate matter (PM) composition on people’s health and on historic sites, in correlation with the daily and seasonal microclimate monitoring of the indoor and outdoor areas of the Roman Mosaic Edifice museum (the maritime port of Constanta, Romania). More specifically, the increase of metal concentrations in particulate matter during the summer of 2018 and spring of 2019 in the museum under investigation could possibly be associated with the microclimates of both seasons, with coastal factors, as well as with the anthropic activities specific to the port of Constanta. FTIR and inductively coupled plasma mass spectroscopy (ICP-MS) techniques, used for the investigation of PM2.5–10 samples, revealed high concentrations of Fe, Al-rich, and soluble particles inside the investigated museum area. In this respect, the chemical measurements of the PM2.5–10 masses highlighted high concentrations of heavy metals (i.e., Al, Fe, Zn, Mn, and Pb) and low concentrations of trace metals (i.e., Cr, Ni, Cu, and Cd). Statistical analysis showed that the chemical compositions of the particulate matter in the indoor and outdoor areas of the Roman Mosaic Edifice were influenced by microclimatic conditions, mainly temperature and relative humidity (RH). A potential health risk for tourists is the thermal and humid conditions, alongside the toxic components of the particulate matter. This research seeks to provide solutions for improving the environmental conditions inside the Roman Mosaic Edifice and to offer useful suggestions concerning health promotion and the protection of museum exhibits against possible future deterioration.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 647
Author(s):  
Mengqi Qian ◽  
Yuwei Zuo ◽  
Zhihao Chen ◽  
Xiaoshuang Yin ◽  
Ying Liu ◽  
...  

The effect of NaCl at extremely high concentrations from 3.5 to 14 wt. % on the crystallization of CaCO3 was investigated in depth. The static test experiment verified that the Ca2+ retention efficiency (η) of NaCl on CaCO3 scale increased from 31.06% (3.5 wt. %) to 41.56% (14 wt. %). Based on the calculation of supersaturation rations, the high concentration of NaCl could reduce the activity coefficients of [Ca2+] and [CO32−], thus reducing the actual concentration of CaCO3. The CaCO3 deposition rate constants (k) showed that NaCl slowed down the rate of CaCO3 crystallization. The X–ray diffraction (XRD) testing disclosed that the growth of (1 0 4) and (1 1 0) faces from calcite was impeded, while the formation of (1 1 1) face from aragonite was induced by the increasing concentration of NaCl. The inductively coupled plasma optical emission spectrometry (ICP–OES) results indicated that Na+ could be doped into CaCO3, leading to the one–dimensional crystal growth. It was further proved that NaCl heightens the efficiency of the typical phosphate inhibitors (2–phosphonobutane–1,2,4–tricarboxylic acid (PBTCA) and 1–hydroxyethane–1,1–diphosphonic acid (HEDP)) on prohibiting the scale of CaCO3.


2019 ◽  
Vol 12 ◽  
pp. 117862211986900 ◽  
Author(s):  
Joan Nyika ◽  
Ednah Onyari ◽  
Megersa Olumana Dinka ◽  
Shivani Bhardwaj Mishra

Precise estimation of metals in samples remains a challenge as a result of analytical biases and errors, which occur at sample collection, preparation, and measurement stages. A poor understanding of the nature and occurrence of these errors further aggravates this challenge. This study aimed at comparing the effectiveness of inductively coupled plasma (ICP) mass spectrometry (MS) and optical emission spectrometry (OES) techniques in quantifying metals from contaminated soils of Roundhill landfill vicinity. Using statistical tools, the study evaluated biases of the 2 methods. High coefficients of variation were realized for V, Cr, and Pb concentrations varied at various sampling sites. Concentrations of elements obtained using the 2 methods had no significant differences using t-test analysis. Definitive agreement for the 2 methods was observed for V, Cr, Co, Ni, Cu, Zn, Sr, and Pb concentrations, whereas the concentrations of Mg, Ca, Ti, Mn, and Fe showed some deviations in their regression lines. Spectral, systematic, memory, and carry over errors could be attributable to these deviations. The errors promote chelation and adsorption of ions in samples to form insoluble compounds that cannot be quantified. Overall, ICP-MS had greater sensitivity than ICP-OES in trace elements analysis compared with major elements.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 724-730 ◽  
Author(s):  
Qing Ge ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.


2020 ◽  
Vol 8 (12) ◽  
pp. 2033
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Abdenbi Zine El Abidine ◽  
...  

The pollution of soils by heavy metals resulting from mining activities is one of the major environmental problems in North Africa. Mycorrhizoremediation using mycorrhizal fungi and adapted plant species is emerging as one of the most innovative methods to remediate heavy metal pollution. This study aims to assess the growth and the nutritional status of ectomycorrhizal Pinus halepensis seedlings subjected to high concentrations of Pb, Zn, and Cd for possible integration in the restoration of heavy metals contaminated sites. Ectomycorrhizal and non-ectomycorrhizal P. halepensis seedlings were grown in uncontaminated (control) and contaminated soils for 12 months. Growth, mineral nutrition, and heavy metal content were assessed. Results showed that ectomycorrhizae significantly improved shoot and roots dry masses of P. halepensis seedlings, as well as nitrogen shoot content. The absorption of Pb, Zn, and Cd was much higher in the roots than in the shoots, and significantly more pronounced in ectomycorrhizal seedlings—especially for Zn and Cd. The presence of ectomycorrhizae significantly reduced the translocation factor of Zn and Cd and bioaccumulation factor of Pb and Cd, which enhanced the phytostabilizing potential of P. halepensis seedlings. These results support the use of ectomycorrhizal P. halepensis in the remediation of heavy metal contaminated sites.


Geology ◽  
2020 ◽  
Vol 48 (7) ◽  
pp. 678-682
Author(s):  
James B. Molloy ◽  
Donald T. Rodbell ◽  
David P. Gillikin ◽  
Kurt T. Hollocher

Abstract Inadequate management of mine tailings at Cerro de Pasco, one of Peru’s largest mining complexes, has resulted in elevated concentrations of Pb, As, Cu, Zn, and Ag in surface soil horizons across the Junín Plain, central Peru. During June 2016, in response to local concern over mine contamination, teams of local citizens armed with sample bags, plastic trowels, and GPS receivers acquired 385 surface soil samples and 9 plant samples from agricultural lands from an area ∼1000 km2 on the Junín Plain. Metal concentrations were determined by acid digestion and inductively coupled plasma–mass spectrometry, and results revealed elevated levels of Pb, As, Cu, Zn, and Ag in all samples within a 10 km radius of the center of mining activities, and measurable contamination at least 30 km to the south-southwest, in the direction of prevailing winds. Dust traps emplaced for a 12 month period confirmed that contamination is ongoing. High metal concentrations in grasses growing on contaminated soils revealed that a portion of the total metal contamination is removed from the soil and held in grass tissue, where it can be ingested by graminivores, especially llama, alpaca, and sheep, thereby entering the human food supply.


2011 ◽  
Vol 356-360 ◽  
pp. 3051-3054 ◽  
Author(s):  
Zhu Hong Ding ◽  
Xin Hu

Roadside soil, dusts, and three ornamental plants-Begoniaceae (Begonia semperflorens Link et Otto), Tagetes (Tagetes erecta Linn.), and Salvia (Salvia splendens Ker-Gawle) were collected from urban arteries in Nanjing City, China. Concentrations of metals (Pb, Cd, Cu and Zn) were analyzed using inductively coupled plasma atom emission spectrometry and inductively coupled plasma mass spectrometry. Cd was the most important contaminant in roadside soil and dusts. Generally, Begoniaceae accumulated more metals than Tagetes and Salvia. The order of bioconcentration factor values for three kinds of plants were Cd > Cu > Zn > Pb, suggesting Cd was more easily accumulated by ornamental plants than Zn and Pb from soils to roots. The values of the translocation factor show the significant species specific characteristics on the ability of metals (Cd, Cu, Zn and Pb) translocation from roots to leaves. Begoniaceae was recommended as a bioindicator of heavy metals in the urban environment.


Sign in / Sign up

Export Citation Format

Share Document