scholarly journals A vertical wind structure that leads to extreme rainfall and major flooding in southeast Australia

2016 ◽  
Vol 66 (4) ◽  
pp. 380
Author(s):  
Jeff Callaghan ◽  
Scott B. Power

Here we examine winds associated with extreme rainfall and major flooding in coastal catchments and more broadly over southeastern Australia. Both radio-sonde and re-analysis data are examined. In every case (i) atmospheric moisture content is high and (ii) the low-level winds are onshore, and in almost every case (iii) the wind-direction turns anti-cyclonically with increasing height up to 500 hPa. Data from Brisbane extending back more than 50 years is consistent with this behavior: winds turn anti-cyclonically with increasing height on days with heavy rainfall, whereas winds turn cyclonically with increasing height on days with light or no rainfall. In the coastal zone, extreme rainfall rarely occurs without (i), (ii) and (iii). In eastern Australia beyond the coastal zone, conditions (i) and (iii) are also associated with extreme rainfall. We found very few cases where such conditions were not associated with extreme rainfall in this broader region. This study extends previous work by showing that the link between turning winds and rainfall exists in both the tropics and subtropics, and the link applies in cases of extreme rainfall and associated major flooding.

2020 ◽  
Author(s):  
Matthew McKinney ◽  
Jonathan Mitchell

<p>There are records of past Earth climates that were ice-free all the way to the poles (Barron 1983), which can be described as “hothouse” climates. These hothouse climates can be contrasted with an “all-tropics” planet, where the tropics are defined by the atmospheric dynamics, i.e. the Hadley Cell extent (Faulk et al. 2017). This classification is thus primarily dependent on a planet’s rotation, rather than its ice-free extent or surface temperatures. We investigate the parameter space between Earth and an all-tropics world using the open-source GCM Isca, developed by Vallis et al (2018). We take an Earth analog and perform a parameter sweep in three dimensions: global reservoir depth (1000m, 100m, 10m, 1m, 1cm); global saturation vapor pressure (1.5x current, 1.4x, 1.3x, 1.2x, 1.1x, 1x); and rotation rate (16 days, 8 days, 1 day). The sweep will allow us to explore the effects of surface liquid coverage, atmospheric moisture content, and large-scale atmospheric circulation on an Earth-like climate. In this presentation we provide a status report and analysis of initial findings.</p>


2021 ◽  
Vol 71 (1) ◽  
pp. 110
Author(s):  
Acacia Pepler ◽  
Andrew Dowdy

East coast lows (ECLs) are low pressure systems that occur near the east coast of Australia. But not all lows cause the same level of impact, and a small proportion of ECLs are responsible for more than half of all days with widespread rainfall above 50mm in this region. In this study, we combine analyses of cyclones at both the surface and 500hPa levels to assess the locations of cyclones responsible for widespread heavy rainfall on the east coast. We found that the majority of days with widespread totals above 100mm on the east coast occur when a low at 500hPa over inland southeast Australia coincides with a surface low located more directly over the east coast. Such events occur on about 15 days per year but are responsible for more than 50% of days with widespread heavy rainfall on the eastern seaboard of Australia. We also found that extreme rainfall was most likely when both the surface and upper cyclones were very strong, when measured using the maximum Laplacian of pressure/height. The seasonal frequency of cyclones at the surface and 500hPa were found to be only weakly correlated with each other and often had opposing relationships (albeit weak in magnitude) with both global climate drivers and indices of local circulation variability. Trends in cyclone frequency were weak over the period 1979–2019, but there was a small decline in the frequency of deep cyclone days, which was statistically significant in some parts of the southeast. Understanding which ECLs are associated with heavy rainfall will help us to better identify how future climate change will influence ECL impacts.


2016 ◽  
Vol 66 (4) ◽  
pp. 424
Author(s):  
Lam P. Hoang ◽  
Michael J. Reeder ◽  
Gareth. J. Berry ◽  
Juliane Schwendike

Extreme rainfall in the tropics is frequently linked with coherent synoptic-scale potential vorticity (PV) disturbances. Here, an objective technique is used to identify coherent synoptic-scale cyclonic PV maxima with a focus on those that occur during summer over the African and Australian tropics. These two regions are chosen for comparison because of their geographical and climatological similarities. In particular, in both regions oceans lie equatorward and extensive deserts lie pole-ward, a juxtaposition that produces a reversal in the mean north-south temperature gradient and, through thermal wind, a low level easterly jet.In general, in the lower troposphere there are more coherent PV maxima in the tropics in the summer hemisphere than the winter hemisphere. These coherent PV maxima generally move with the background flow in the lower troposphere. The largest meridional flux of coherent PV maxima lies along eastern Australia with about half of the coherent PV maxima generated through the filamentaton and eventual isolation of midlatitude PV. In contrast, in the north African tropics, coherent PV maxima are generated mostly in the tropics and move westward through the west African monsoon region.Composites based on the extreme rainfall days for two regions are broadly similar with large, statistically significant PV maxima to the east of the maximum positive rainfall anomalies. The vertical structures of the PV fields in the two regions reveal a cyclonic PV maximum in the mid-troposphere collocated with the maximum of diabatic heating. The composite horizontal wind structures in the Australian tropics show structures similar to mesoscale convective systems (MCSs), whereas in the African tropics, they are similar to easterly waves.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


2021 ◽  
Author(s):  
E. F. Asbridge ◽  
D. Low Choy ◽  
B. Mackey ◽  
S. Serrao-Neumann ◽  
P. Taygfeld ◽  
...  

AbstractThe peri-urban interface (PUI) exhibits characteristic qualities of both urban and rural regions, and this complexity has meant that risk assessments and long-term planning for PUI are lagging, despite these areas representing new developing settlement frontiers. This study aims to address this knowledge gap by modifying an existing approach to quantify and assess flood risk. The risk triangle framework was used to map exposure, vulnerability and biophysical variables; however, in a novel application, the risk triangle framework was adapted by presuming that there is a variation in the degree of exposure, vulnerability and biophysical variables. Within Australia and globally, PUIs are often coastal, and flood risk associated with rainfall and coastal inundation poses considerable risk to communities in the PUI; these risks will be further exacerbated should projections of increasing frequency of extreme rainfall events and accelerating sea-level rise eventuate. An indicator-based approach using the risk triangle framework that maps flood hazard, exposure and vulnerability was used to integrate the biophysical and socio-economic flooding risk for communities in PUI of the St Georges Basin and Sussex Inlet catchments of south-eastern Australia. Integrating the flood risk triangle with future scenarios of demographic and climate change, and considering factors that contribute to PUI flood risk, facilitated the identification of planning strategies that would reduce the future rate of increase in flood risk. These planning strategies are useful for natural resource managers and land use planners across Australia and globally, who are tasked with balancing socio-economic prosperity for a changing population, whilst maintaining and enhancing ecosystem services and values. The indicator-based approach used in this study provides a cost-effective first-pass risk assessment and is a valuable tool for decision makers planning for flood risk across PUIs in NSW and globally.


2013 ◽  
Vol 10 (3) ◽  
pp. 1529-1541 ◽  
Author(s):  
N. Wright ◽  
S. Zahirovic ◽  
R. D. Müller ◽  
M. Seton

Abstract. A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Xia Feng ◽  
Paul Houser

In this study, we developed a suite of spatially and temporally scalable Water Cycle Indicators (WCI) to examine the long-term changes in water cycle variability and demonstrated their use over the contiguous US (CONUS) during 1979–2013 using the MERRA reanalysis product. The WCI indicators consist of six water balance variables monitoring the mean conditions and extreme aspects of the changing water cycle. The variables include precipitation (P), evaporation (E), runoff (R), terrestrial water storage (dS/dt), moisture convergence flux (C), and atmospheric moisture content (dW/dt). Means are determined as the daily total value, while extremes include wet and dry extremes, defined as the upper and lower 10th percentile of daily distribution. Trends are assessed for annual and seasonal indicators at several different spatial scales. Our results indicate that significant changes have occurred in most of the indicators, and these changes are geographically and seasonally dependent. There are more upward trends than downward trends in all eighteen annual indicators averaged over the CONUS. The spatial correlations between the annual trends in means and extremes are statistically significant across the country and are stronger forP,E,R, andCcompared todS/dtanddW/dt.


Sign in / Sign up

Export Citation Format

Share Document