Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress

2009 ◽  
Vol 36 (9) ◽  
pp. 783 ◽  
Author(s):  
Wei-Dong Li ◽  
Dilip K. Biswas ◽  
Hong Xu ◽  
Chang-Qing Xu ◽  
Xian-Zhong Wang ◽  
...  

Gas exchange, chlorophyll fluorescence, and contents of some metabolites in two Japanese honeysuckle (Lonicera japonica Thunb.) cultivars, Damaohua (2n = 2x) and Jiufengyihao (2n = 4x), were compared with explore the function of chromosome doubling under water stress conditions. Water stress significantly decreased net photosynthesis rate, stomatal conductance, and transpiration rate of both cultivars. It also decreased electron transport rate, effective quantum yield of Photosystem II, photochemical quenching, and starch content, but increased non-photochemical quenching and contents of total soluble sugars, proline, and malondialdehyde. However, the tetraploid cultivar showed higher resistance to water stress than the diploid, as indicated by the fact that gas exchange, chlorophyll fluorescence, and metabolites were less affected for the tetraploid than the diploid. Moreover, the tetraploid recovered more quickly than the diploid after re-watering. Morphological and anatomical analysis further revealed that the tetraploid possessed less whole plant leaf area, higher leaf mass per unit area, thicker epidermis (both upper and lower) and palisade tissue, as well as denser pubescence. All of those specialised structures caused by chromosome doubling might lead to greater capacity in coping with drought stress. Our findings suggest that the effect of chromosome doubling on drought resistance in L. japonica could attribute to the improvement of structure and photosynthesis-related traits.

1994 ◽  
Vol 24 (5) ◽  
pp. 954-959 ◽  
Author(s):  
L.J. Samuelson ◽  
J.R. Seiler

The interactive influences of ambient (374 μL•L−1) or elevated (713 μL•L−1) CO2, low or high soil fertility, well-watered or water-stressed treatment, and rooting volume on gas exchange and growth were examined in red spruce (Picearubens Sarg.) grown from seed through two growing seasons. Leaf gas exchange throughout two growing seasons and growth after two growing seasons in response to elevated CO2 were independent of soil fertility and water-stress treatments, and rooting volume. During the first growing season, no reduction in leaf photosynthesis of seedlings grown in elevated CO2 compared with seedlings grown in ambient CO2 was observed when measured at the same CO2 concentration. During the second growing season, net photosynthesis was up to 21% lower for elevated CO2-grown seedlings than for ambient CO2-grown seedlings when measured at 358 μL•L−1. Thus, photosynthetic acclimation to growth in elevated CO2 occurred gradually and was not a function of root-sink strength or soil-fertility treatment. However, net photosynthesis of seedlings grown and measured at an elevated CO2 concentration was still over 2 times greater than the photosynthesis of seedlings grown and measured at an ambient CO2 concentration. Growth enhancement by CO2 was maintained, since seedlings grown in elevated CO2 were 40% larger in both size and weight after two growing seasons.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Chiu-Yueh Lan ◽  
Kuan-Hung Lin ◽  
Chun-Liang Chen ◽  
Wen-Dar Huang ◽  
Chang-Chang Chen

Wheat (Triticum aestivum) cultivar Taichung SEL.2 (TCS2) is a salt-tolerance variety, but the mechanism involved remains unclear. This study aims to distinguish between the non-ionic osmotic and salt-mediated physiological effects on TCS2. Osmotic agents polyethylene glycol (PEG) and sodium chloride (NaCl) were applied at three iso-osmotic levels, level 1 containing 24% (w/v) PEG and 200 mM NaCl, level 2 containing 26.5% (w/v) PEG and 250 mM NaCl), and level 3 containing 29% (w/v) PEG and 300 mM NaCl, respectively. According to the investigation of chlorophyll fluorescence in the better NaCl-treated seedlings, maximal quantum yield of photosystem II (PSII) (Fv/Fm) and significant higher effective quantum yield of PSII (ΦPSII) at level 3 were observed. Meanwhile, the non-photochemical quenching of PSII (NPQ) and the quantum yield of regulated energy dissipation of PSII [Y(NPQ)] were significantly higher in the NaCl-treated seedlings, and the quantum yield of non-regulated energy dissipation of PSII [Y(NO)] in the NaCl-treated seedlings was lower than the PEG-treated ones at level 2 and level 3. Furthermore, the less extensive degradation of photosynthetic pigments, the better ascorbate peroxidase (APX) activity and the less accumulation of malondialdehyde (MDA) were also observed in NaCl-treated seedlings. In the morphological traits, shoot elongation in NaCl-treated seedlings was also preserved. These results suggest that TCS2 is more resistant to NaCl-induced osmotic stress than to the PEG-induced stress. This study contributes to plant breeder interest in drought- and/or salt-tolerant wheat varieties.


2017 ◽  
Vol 45 (1) ◽  
pp. 238-244 ◽  
Author(s):  
Udson de Oliveira BARROS JUNIOR ◽  
Maria Antonia Machado BARBOSA ◽  
Michael Douglas Roque LIMA ◽  
Gélia Dinah Monteiro VIANA ◽  
Allan Klynger da Silva LOBATO

Low water supply frequently interferes on chlorophyll fluorescence and gas exchange. This study aimed to answer if a short-time of rehydration is efficient to re-establish chlorophyll fluorescence and gas exchange in cowpea plants. The experiment used four treatments (sensitive / water deficit, sensitive / control, tolerant / water deficit and tolerant / control). The sensitive and tolerant cultivars after water restriction had significant changes in gas exchange. On the third day, the stress caused lower for PN and gs in sensitive cultivar of 67% and 45%, respectively. After rehydration these parameters were not recovered significantly to two cultivars. In relation to chlorophyll fluorescence, water stress caused significant changes in all parameters evaluated of cultivars, being observed effects more intense on sensitive cultivar in the parameters Fv/Fm (38%) and Fo (69%). Rehydration did not promote recovery of the values of Fv/Fm and Fo to sensitive cultivar. Therefore, our study revealed that a short-time of rehydration is not effective to re-establish chlorophyll fluorescence and gas exchange in cowpea plants submitted to water deficit.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 238
Author(s):  
Yu Kyeong Shin ◽  
Shiva Ram Bhandari ◽  
Jung Su Jo ◽  
Jae Woo Song ◽  
Jun Gu Lee

This study monitored changes in chlorophyll fluorescence (CF), growth parameters, soil moisture content, phytochemical content (proline, ascorbic acid, chlorophyll, total phenol content (TPC), and total flavonoid content (TFC)), and antioxidant activities in 12-day-old lettuce (Lactuca sativa L.) seedlings grown under drought stress (no irrigation) and control (well irrigated) treatments in controlled conditions for eight days. Measurements occurred at two-day intervals. Among ten CF parameters studied, effective quantum yield of photochemical energy conversion in PSII (Y(PSII)), coefficient of photochemical quenching (qP), and coefficient of photochemical quenching of variable fluorescence based on the lake model of PSII (qL) significantly decreased in drought-stressed seedlings from day 6 of treatment compared to control. In contrast, maximum quantum yield (Fv/Fm), ratio of fluorescence (Rfd), and quantum yield of non-regulated energy dissipation in PSII (Y(NO)) were significantly affected only at the end. All growth parameters decreased in drought-stressed seedlings compared to control. Proline started increasing from day 4 and showed ~660-fold elevation on day 8 compared to control. Chlorophyll, ascorbic acid, TPC, TFC, and antioxidant activities decreased in drought-stressed seedlings. Results showed major changes in all parameters in seedlings under prolonged drought stress. These findings clarify effects of drought stress in lettuce seedlings during progressive drought exposure and will be useful in the seedling industry.


2018 ◽  
Vol 8 (2) ◽  
pp. 286-298
Author(s):  
Gabriella Nora Maria Giudici ◽  
Josef Hájek ◽  
Miloš Barták ◽  
Svatava Kubešová

Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  


2017 ◽  
Vol 9 (12) ◽  
pp. 268 ◽  
Author(s):  
Diogo S. Moura ◽  
Giovani G. Brito ◽  
Ângela D. Campos ◽  
Ítalo L. Moraes ◽  
Paulo R. R. Fagundes ◽  
...  

Phenylalanine ammonia-lyase (PAL) which is considered to be one of the main lines of cell acclimation against stress in plants, non-structural carbohydrates (NSC) accumulation and chlorophyll fluorescence parameters were quantified in two rice genotypes as a function of two temperature regimes: 22/30 °C (control) and 28/30 °C night/day (high night temperatures - HNT), imposed from heading to milk stage. The rice cultivars chosen were Nagina22 (N22) and BRS Querência (BRS-Quer), which are genotypes tolerant and sensitive to high temperatures, respectively. BRS-Quer genotype highlighted more sensitive responses maintaining higher PAL and peroxidase levels on seventh and twenty-first days after stress imposing. On the other hand, this genotype showed levels of fructose, glucose and sucrose decreasingly across stress period whether compared to N22. Both genotypes showed similarity for most of the chlorophyll fluorescence parameters. However, the photosynthesis induction curve highlighted that HNT caused decreases in some photochemical quenching of fluorescence as well as increases of non-phochemical quenching, affecting more prominently BRS-Quer genotype. N22 maintained unaltered the spikelet sterility and 1000-grain weight across temperature regimes showing a consistent trend with its stem NSC accumulation during stress period. The higher availability of soluble sugars shown by N22 at the end of stress period could be unloaded in spikelet formation and grain fillings contributing in their lower sterility rate and greater 1000-grain weight stability across the environments. These results indicate that selecting genotypes with higher capacity to stem NSC translocation beyond accumulation at HNT could lead to more grain yield stability in future climate scenarios.


2017 ◽  
Vol 41 (2) ◽  
Author(s):  
Angélica Lino Rodrigues ◽  
Liane Lima ◽  
Thayssa Rabelo Schley ◽  
Luiz Fernando Rolim de Almeida

ABSTRACT The intensity and frequency of drought periods has increased according to climate change predictions. The fast overcome and recovery are important adaptive features for plant species found in regions presenting water shortage periods. Copaifera langsdorffii is a neotropical species that has developed leaves presenting physiological mechanisms and morphological adaptations that allow its survival under seasonal water stress. We aimed in this work to observe substantial physiological responses for water saving and damage representative to the photochemical reaction after exposed plants to water stress and to subsequent recovery. We found in plants mechanisms to control water loss through the lower stomatal conductance, even after rehydration. It goes against the rapid recovery of leaves, indicated by the relative water content values restored to previously unstressed plants. Stomatal conductance was the only variable presenting high plasticity index. In photochemical activity, the species presented higher photochemical quenching, electron transport rate and effective quantum yield of photosystem II when they were subjected to rehydration after water stress period. Our results suggest that C. langsdorffii presented rapid rehydration and higher photochemical efficiency even after water restriction. These data demonstrate that this species can be used as a model for physiological studies due to the adjustment developed in response to different environmental schemes.


2013 ◽  
Vol 844 ◽  
pp. 11-14
Author(s):  
Aidil Azhar ◽  
Jate Sathornkich ◽  
Ratchanee Rattanawong ◽  
Poonpipope Kasemsap

This experiment aimed to evaluate the leaf chlorophyll fluorescence and gas exchange response to drought conditions of young rubber plants with different scions. Buds from four genotypes of a progeny derived from crossed clones of RRIM600 x RRII105 from Nongkhai Rubber Research Center, T187, T186, T149 and T172, were grafted to RRIM 600 rootstocks. Eight-month old plants with two flushes were used in this study. Two levels of water treatment were used, drought condition (W1) and well-watered as control (W0). Leaf chlorophyll fluorescence, stomatal conductance (gs) and net photosynthesis rate (Pn) were investigated in three phases: before drought, during drought and after re-watering. Leaf gas exchange parameters were measured using Li-6400 (LiCor Inc.). Leaf chlorophyll fluorescence was measured using FluorPen FP 100 (Photon Systems Instruments). Before drought, genotype T186 had the greatest net photosynthesis rates followed by T172, T187 and T149; there was no difference in maximum quantum yield of photosystem II (Fv/Fm) and performance index on absorption basis (PIABS). Drought conditions caused reduction in stomatal conductance, net photosynthesis rates, and leaf chlorophyll fluorescence in all genotypes. In re-watering conditions, genotype T186 and T172 experienced quick recovery while the others showed partial recovery but the values of all parameters did not reach previous levels before treatment.


Sign in / Sign up

Export Citation Format

Share Document