scholarly journals Partitioning hydraulic resistance in Sorghum bicolor leaves reveals unique correlations with stomatal conductance during drought

2014 ◽  
Vol 41 (1) ◽  
pp. 25 ◽  
Author(s):  
Troy W. Ocheltree ◽  
Jesse B. Nippert ◽  
Mary Beth Kirkham ◽  
P. Vara V. Prasad

The hydraulic architecture of leaves represents the final path along which liquid water travels through the plant and comprises a significant resistance for water movement, especially for grasses. We partitioned leaf hydraulic resistance of six genotypes of Sorghum bicolor L. (Moench) into leaf specific hydraulic resistance within the large longitudinal veins (r*LV) and outside the large veins (r*OLV), and correlated these resistances with the response of stomatal conductance (gs) and photosynthesis (A) to drought. Under well-watered conditions, gs was tightly correlated with r*OLV (r2 = 0.95), but as soil moisture decreased, gs was more closely correlated with r*LV (r2 = 0.97). These results suggest that r*OLV limits maximum rates of gas exchange, but the ability to efficiently move water long distances (low r*LV) becomes more important for the maintenance of cell turgor and gas exchange as soil moisture declines. Hydraulic resistance through the leaf was negatively correlated with evapotranspiration (P < 0.001) resulting in more conservative water use in genotypes with large leaf resistance. These results illustrate the functional significance of leaf resistance partitioning to declining soil moisture in a broadly-adapted cereal species.

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140620 ◽  
Author(s):  
Fei Zhang ◽  
Jialin Yu ◽  
Christopher R. Johnston ◽  
Yanqiu Wang ◽  
Kai Zhu ◽  
...  

2020 ◽  
Vol 66 (No. 1) ◽  
pp. 33-40
Author(s):  
Abdalla Ahmed ◽  
Ibrahim Aref ◽  
Thobayet Alshahrani

Taking the importance of agricultural production sustainability with limited resources to use efficiency in an arid area, afield experiment was designed to investigate the effect of three, Acacia trees (Acacia nilotica, A. seyal, and A. tortilis) planting combination on soil fertility and Sorghum bicolor L. growth and physiological performance. The sorghum planted in 7 strips between 14 rows of Acacia trees planting combinations and one treeless strip as control. Acacia species plantations significantly increase soil fertility in terms of available nitrogen (N), phosphorus (P), potassium (K) and organic carbon (OC) contents as compared to control, highest level of N and P content (59.01 ± 1.45 and 58.77 ± 1.10 mg/kg) was reported in strip between rows of A. tortilis. Although the highest net photosynthesis rate (P<sub>n</sub>) and stomatal conductance (g<sub>s</sub>) recorded in plants grown between rows of pure A. torilis, and rows of A. torilis–A. seyal, but different Acacia significantly enhanced sorghum growth and physiology with reference to net photosynthesis rate, stomatal conductance and chlorophyll fluorescence (chlF). The results stated linear relation between soil nutrients (N, P, K), P<sub>n</sub>, and chlF increasing soil fertility improve physiological performance of sorghum. In conclusion, the three Acacia improve soil fertility and sorghum growth. Generally, this plantation trial can be environment-friendly alternative agricultural practices in Saudi Arabia or any area with a similar ecological condition to amend the soil and improve crop performance.


Author(s):  
Erica Casagrande Biasuz ◽  
Lee Kalcsits

Composite trees combine traits from both the rootstock and scion. Dwarfing rootstocks are used to reduce shoot vigor and improve fruit quality and productivity. Although differences in rootstock vigour have been clearly described, the underlying physiological mechanisms regulating scion vigor are not well understood. Plant water status is strongly influenced by stem hydraulic resistance to water movement. In the scion, stomata regulate transpiration rates and are essential to prevent hydraulic failure. Lower stomatal conductance contributes to enriched leaf carbon isotope composition (δ13C). Combined, the effects of increased hydraulic resistance, limited stomatal control, and subsequently, limited gas exchange can affect tree growth. These differences may also correspond to differences in scion vigor. Here, vegetative growth, gas exchange, stem water potential, and leaf δ13C were compared to determine how rootstocks affect scion water relations. B.9 had the lowest shoot vigor compared to the more vigorous rootstock, G.890. Similarly, photosynthetic rates were also lower. Rootstock vigor was closely associated with leaf gas exchange and stem water potential in the scion and were reflected in leaf δ13C signatures. Dwarfing was strongly related to hydraulic limitations induced by rootstock genotype and these changes are distinguishable when measuring leaf and stem δ13C composition.


Author(s):  
Gangadasari Sravana Lakshmi ◽  
B. N. Aravind Kumar ◽  
N. G. Hanamaratti ◽  
V. S. Kubsad

2011 ◽  
Vol 11 (12) ◽  
pp. 33583-33650 ◽  
Author(s):  
P. Büker ◽  
T. Morrissey ◽  
A. Briolat ◽  
R. Falk ◽  
D. Simpson ◽  
...  

Abstract. The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments so far has been the approximation that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and ultimately O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. The soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods which incorporate hydraulic resistance and plant capacitance perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water lost from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum stomatal conductance, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate gsto directly to soil water content and potential provide adequate estimates of soil moisture and influence on gsto such that they are suitable to be used to assess the potential risk posed by O3 to forest trees across Europe.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Jean Paulo Vitor de Oliveira ◽  
Vinícius Politi Duarte ◽  
Evaristo Mauro de Castro ◽  
Paulo Cesar Magalhães ◽  
Fabricio José Pereira

Sign in / Sign up

Export Citation Format

Share Document