Germination characteristics of Melaleuca ericifolia Sm. (swamp paperbark) and their implications for the rehabilitation of coastal wetlands

2006 ◽  
Vol 57 (7) ◽  
pp. 703 ◽  
Author(s):  
Randall W. Robinson ◽  
Paul I. Boon ◽  
Paul Bailey

Swamp paperbark, Melaleuca ericifolia Sm., is a small, clonal tree that occupies fresh- and brackish-water wetlands across south-eastern Australia. Seeds collected from Dowd Morass, a secondary-salinised Ramsar-listed wetland of the Gippsland Lakes region in eastern Victoria, showed very low viability (< 6%), with less than 50% of the seeds germinating even under ideal laboratory conditions. Greatest germination occurred with surface-sown seeds, germinated in darkness at a mean temperature of 20°C and salinity < 2 g L–1. At 20°C, maximum germination occurred at a salinity of 1 g L–1; germination fell rapidly at a near constant rate with increasing salinity. Lower temperatures, while moderating the inhibitory effects of salinity, markedly reduced germination; higher temperatures increased the inhibitory effects of salinity and light and reduced overall germination rates. Seeds subjected to brief inundation with saline water germinated rapidly if flushed by, and subsequently grown under, freshwater conditions. Specific timing of management interventions, particularly manipulations of water regime to control salinity regimes, are required if germination of M. ericifolia on the landscape scale is to be successful. Even so, the low overall viability of the seeds would present difficulties to large-scale, seed-based rehabilitation efforts.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254701
Author(s):  
William Glamore ◽  
Duncan Rayner ◽  
Jamie Ruprecht ◽  
Mahmood Sadat-Noori ◽  
Danial Khojasteh

Land reclamation projects and the installation of drainage infrastructure has impacted coastal wetlands worldwide. By altering water levels and inundation extent, these activities have changed the viable ecosystems onsite and resulted in the proliferation of freshwater species. As more than 50% of tidal wetlands have been degraded globally over the last 100 years, the importance of this issue is increasingly being recognised and tidal wetland restoration projects are underway worldwide. However, there are currently limited sites where large-scale reintroduction of tidal flushing has been implemented with the explicit aim to foster the growth of a threatened ecosystem. In this study, the tidal restoration of an internationally recognised Ramsar listed wetland in eastern Australia is described to highlight how coastal saltmarsh can be targeted by mimicking inundation depths and hydroperiod across the 410-ha site. Coastal saltmarsh is particularly important to this site as it is part of the east Australasian flyway for migratory birds and the minimum saltmarsh extent, as listed within the Ramsar’s limits of acceptable change, have been breached. To recreate coastal saltmarsh habitat onsite, water level and hydroperiod criteria were established based on similar vegetation patterns within the adjacent estuary. A calibrated 2D hydrodynamic model of the site was then used to test how the preferred inundation criteria could be applied to the largest possible restored wetland area. Once optimised, a synthetic tidal signal was implemented onsite via automated hydraulic controls. The onsite vegetation response over an 8-year period was assessed to highlight the ecosystem response to controlled tidal inundation and denoted substantial saltmarsh expansion during the period. The techniques applied onsite have successfully met the restoration targets and can be applied at similar sites worldwide, offsetting sea level rise impacts to natural inundation hydroperiod.


2020 ◽  
Vol 12 (15) ◽  
pp. 2351
Author(s):  
Tien-Hao Liao ◽  
Marc Simard ◽  
Michael Denbina ◽  
Michael P. Lamb

Coastal wetlands are productive ecosystems driven by highly dynamic hydrological processes such as tides and river discharge, which operate at daily to seasonal timescales, respectively. The scientific community has been calling for landscape-scale measurements of hydrological variables that could help understand the flow of water and transport of sediment across coastal wetlands. While in situ water level gauge data have enabled significant advances, they are limited in coverage and largely unavailable in many parts of the world. In preparation for the NISAR mission, we investigate the use of spaceborne Interferometric Synthetic Aperture Radar (InSAR) observations of phase and coherence at L-band for landscape-scale monitoring of water level change and vegetation cover in coastal wetlands across seasons. We use L-band SAR images acquired by ALOS/PALSAR from 2007 to 2011 to study the impact of seasonal changes in vegetation cover on InSAR sensitivity to water level change in the wetlands of the Atchafalaya basin located in coastal Louisiana, USA. Seasonal variations are observed in the interferometric coherence ( γ ) time-series over wetlands, with higher coherence during the winter and lower coherence during the summer. We show with InSAR time-series that coherence is inversely correlated with Normalized Difference Vegetation Index (NDVI). Our analysis of polarimetric scattering mechanisms demonstrates that double-bounce is the dominant mechanism in swamps while its weakness in marshes hinders estimation of water level changes. In swamps, water level change maps derived from InSAR are highly correlated (r2 = 0.83) with in situ data from the Coastwide Reference Monitoring System (CRMS). From October to December, we observed that the water level may be below wetland elevation and thus not inundating wetlands significantly. Our analysis shows that water level can only be retrieved when both images used for InSAR are acquired when wetlands are inundated. The L-band derived-maps of water level change show large scale gradients originating from the Gulf Intracoastal Waterway rather than the main delta trunk channel, confirming its significant role as a source of hydrologic connectivity across these coastal wetlands. These results indicate that NISAR, with its InSAR observations every 12 days, will provide the measurements necessary to reveal large scale hydrodynamic processes that occur in swamps across seasons.


2000 ◽  
Vol 51 (2) ◽  
pp. 165 ◽  
Author(s):  
Peter C. Gehrke ◽  
John H. Harris

Riverine fish in New South Wales were studied to examine longitudinal trends in species richness and to identify fish communities on a large spatial scale. Five replicate rivers of four types (montane, slopes, regulated lowland and unregulated lowland) were selected from North Coast, South Coast, Murray and Darling regions. Fishwere sampled during summer and winter in two consecutive years with standardized gear that maximized the range of species caught. The composition of fish communities varied among regions and river types, with little temporal variation. Distinct regional communities converged in montane reaches and diverged downstream. The fish fauna can be classified into North Coast, South Coast, Murray and Darling communities, with a distinct montane community at high elevations irrespective of the drainage division. Species richness increased downstream in both North Coast and South Coast regions by both replacement and the addition of new species. In contrast, species richness in the Darling and Murray regions reached a maximum in the slopes reaches and then declined, reflecting a loss of species in lowland reaches. The small number of species is typical of the freshwater fish faunas of similar climatic regions world-wide. Fish communities identified in this study form logical entities for fisheries management consistent with the ecosystem-focused, catchment-based approach to river management and water reform being adopted in Australia.


2015 ◽  
Vol 66 (6) ◽  
pp. 559 ◽  
Author(s):  
Jerom R. Stocks ◽  
Charles A. Gray ◽  
Matthew D. Taylor

Characterising the movement and habitat affinities of fish is a fundamental component in understanding the functioning of marine ecosystems. A comprehensive array of acoustic receivers was deployed at two near-shore coastal sites in south-eastern Australia, to examine the movements, activity-space size and residency of a temperate rocky-reef, herbivorous species Girella elevata. Twenty-four G. elevata individuals were internally tagged with pressure-sensing acoustic transmitters across these two arrays and monitored for up to 550 days. An existing network of coastal receivers was used to examine large-scale movement patterns. Individuals exhibited varying residency, but all had small activity-space sizes within the arrays. The species utilised shallow rocky-reef habitat, displaying unimodal or bimodal patterns in depth use. A positive correlation was observed between wind speed and the detection depth of fish, with fish being likely to move to deeper water to escape periods of adverse conditions. Detection frequency data, corrected using sentinel tags, generally illustrated diurnal behaviour. Patterns of habitat usage, residency and spatial utilisation highlighted the susceptibility of G. elevata to recreational fishing pressure. The results from the present study will further contribute to the spatial information required in the zoning of effective marine protected areas, and our understanding of temperate reef fish ecology.


2021 ◽  
Author(s):  
Anna Schneider ◽  
Alexander Bonhage ◽  
Florian Hirsch ◽  
Alexandra Raab ◽  
Thomas Raab

&lt;p&gt;Human land use and occupation often lead to a high heterogeneity of soil stratigraphy and properties in landscapes within small, clearly delimited areas. Legacy effects of past land use also are also abundant in recent forest areas. Although such land use legacies can occur on considerable fractions of the soil surface, they are hardly considered in soil mapping and inventories. The heterogenous spatial distribution of land use legacy soils challenges the quantification of their impacts on the landscape scale. Relict charcoal hearths (RCH) are a widespread example for the long-lasting effect of historical land use on soil landscapes in forests of many European countries and also northeastern USA. Soils on RCH clearly differ from surrounding forest soils in their stratigraphy and properties, and are most prominently characterized by a technogenic substrate layer with high contents of charcoal. The properties of RCH soils have recently been studied for several regions, but their relevance on the landscape scale has hardly been quantified.&lt;/p&gt;&lt;p&gt;We analyse and discuss the distribution and ecological relevance of land use legacy soils across scales for RCH in the state of Brandenburg, Germany, with a focus on soil organic matter (SOM) stocks. Our analysis is based on a large-scale mapping of RCH from digital elevation models (DEM), combined with modelled SOM stocks in RCH soils.&amp;#160;The distribution of RCH soils in the study region shows heterogeneity at different scales. The large-scale variation is related to the concentration of charcoal production to specific forest areas and the small-scale accumulation pattern is related to the irregular distribution of single RCH within the charcoal production fields. Considerable fractions of the surface area are covered by RCH soils in the major charcoal production areas within the study region. The results also show that RCH can significantly contribute to the soil organic matter stocks of forests, even for areas where they cover only a small fraction of the soil surface. The study highlights that considering land use legacy effects can be relevant for the results of soil mapping and inventories; and that prospecting and mapping land use legacies from DEM can contribute to improving such approaches.&lt;/p&gt;


2011 ◽  
Vol 59 (1) ◽  
pp. 70 ◽  
Author(s):  
Sapphire J. M. McMullan-Fisher ◽  
Tom W. May ◽  
Richard M. Robinson ◽  
Tina L. Bell ◽  
Teresa Lebel ◽  
...  

Fungi are essential components of all ecosystems in roles including symbiotic partners, decomposers and nutrient cyclers and as a source of food for vertebrates and invertebrates. Fire changes the environment in which fungi live by affecting soil structure, nutrient availability, organic and inorganic substrates and other biotic components with which fungi interact, particularly mycophagous animals. We review the literature on fire and fungi in Australia, collating studies that include sites with different time since fire or different fire regimes. The studies used a variety of methods for survey and identification of fungi and focussed on different groups of fungi, with an emphasis on fruit-bodies of epigeal macrofungi and a lack of studies on microfungi in soil or plant tissues. There was a lack of replication of fire treatment effects in some studies. Nevertheless, most studies reported some consequence of fire on the fungal community. Studies on fire and fungi were concentrated in eucalypt forest in south-west and south-eastern Australia, and were lacking for ecosystems such as grasslands and tropical savannahs. The effects of fire on fungi are highly variable and depend on factors such as soil and vegetation type and variation in fire intensity and history, including the length of time between fires. There is a post-fire flush of fruit-bodies of pyrophilous macrofungi, but there are also fungi that prefer long unburnt vegetation. The few studies that tested the effect of fire regimes in relation to the intervals between burns did not yield consistent results. The functional roles of fungi in ecosystems and the interactions of fire with these functions are explained and discussed. Responses of fungi to fire are reviewed for each fungal trophic group, and also in relation to interactions between fungi and vertebrates and invertebrates. Recommendations are made to include monitoring of fungi in large-scale fire management research programs and to integrate the use of morphological and molecular methods of identification. Preliminary results suggest that fire mosaics promote heterogeneity in the fungal community. Management of substrates could assist in preserving fungal diversity in the absence of specific information on fungi.


2004 ◽  
Vol 55 (2) ◽  
pp. 165 ◽  
Author(s):  
Timothy J. Page ◽  
Suman Sharma ◽  
Jane M. Hughes

The freshwater fish, Rhadinocentrus ornatus Regan, 1914, has a patchy distribution through coastal drainages of Queensland and New South Wales, eastern Australia. Isolated populations of R. ornatus are found on several islands, as well as in a disjunct northern population 350 km from its nearest conspecific population. Deoxyribonucleic acid was extracted and sequenced for the mitochondrial ATPase gene to describe the geographic and genetic subdivision within the species. Four major clades were identified. These clades diverged between two and seven million years ago and so represent long-term divisions and possible units of conservation. There are conservation implications in that the narrow and localised distribution of R. ornatus overlaps with an area of large-scale land clearing, high human population and threats from introduced exotic fish. A particularly high centre of Rhadinocentrus diversity in the Tin Can Bay area of Queensland presents some interesting questions about the evolution of the genus Rhadinocentrus.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1549 ◽  
Author(s):  
Haojie Liu ◽  
Bernd Lennartz

Over the past two decades, great efforts have been made to restore coastal wetlands through the removal of dikes, but challenges remain because the effects of flooding with saline water on water quality are unknown. We collected soil samples from two adjacent coastal fen peatlands, one drained and diked, the other open to the sea and rewetted, aiming at assessing the mobility and export of various compounds. Microcosm experiments with constant flow-through conditions were conducted to determine the effluent concentrations of dissolved organic carbon (DOC), ammonium ( NH 4 + ), and phosphate ( PO 4 3 − ) during saline–fresh water cycles. Sodium chloride (NaCl) was used to adjust salinity (saline water, NaCl concentration of 0.12 mol L−1; fresh water, NaCl concentration of 0.008 mol L−1) and served as a tracer. A model analysis of the obtained chloride ( Cl − ) and sodium ( Na + ) breakthrough curves indicated that peat soils have a dual porosity structure. Sodium was retarded in peat soils with a retardation factor of 1.4 ± 0.2 due to adsorption. The leaching tests revealed that water salinity has a large impact on DOC, NH 4 + , and PO 4 3 − release. The concentrations of DOC in the effluent decreased with increasing water salinity because the combination of high ionic strength (NaCl concentration of 0.12 mol L−1) and low pH (3.5 to 4.5) caused a solubility reduction. On the contrary, saline water enhanced NH 4 + release through cation exchange processes. The PO 4 3 − concentrations, however, decreased in the effluent with increasing water salinity. Overall, the decommissioning of dikes at coastal wetlands and the flooding of once drained and agriculturally used sites increase the risk that especially nitrogen may be leached at higher rates to the sea.


Author(s):  
Keisuke Omori ◽  
Toru Sakai ◽  
Jun Miyamoto ◽  
Akihiko Itou ◽  
Aung Naing Oo ◽  
...  

Abstract The Ayeyarwady Delta in the Bay of Bengal, the rice bowl of Myanmar, depends on natural conditions, especially rainfall. During the dry season, the delta’s coastal zone experiences saline water intrusion due to its low-lying topography. On May 2, 2008, Cyclone Nargis made landfall and crossed Ayeyarwady Region and Yangon City, affecting more than 50 townships and causing massive destruction of personal property and natural ecosystems. There is no doubt that Nargis caused an unprecedented large-scale disaster, but there is no objective method to quantify crop yield and salinity damage in the delta post-Nargis. The purpose of this study, therefore, is to clarify the changes in vegetation in paddy fields in the Ayeyarwady Delta using Moderate Resolution Imaging Spectroradiometer data pre- and post-Nargis and determine whether this method can be applied to measure crop and salinity damage. The study used daily composite data at a 250-m resolution (MOD09GQ, collection 6) from 2004 to 2013 and calculated NDVI and salinity indices smoothed by locally weighted regression (Lowess). Based on the results of our studies, NDVI peak value in 2008 was lower by 19% compared to 2007 data, and that the NDVI peak values declined for three straight years since May 2008 when Nargis struck. However, salinity damage evaluation pre- and post-Nargis (using the salinity index equation) showed that soil electrical conductivity did not tend to move up in the post-Nargis dry season (2009), indicating that the decrease in NDVI values was not due to salinity damage.


2017 ◽  
Vol 65 (6) ◽  
pp. 362
Author(s):  
Francesca Lyndon-Gee ◽  
Joanna Sumner ◽  
Yang Hu ◽  
Claudio Ciofi ◽  
Tim S. Jessop

Rotational logging practices are used with the goal of reducing forest disturbance impacts on biodiversity. However, it is poorly understood whether such forest management practices conserve the demographic and genetic composition of animal populations across logged landscapes. Here we investigated whether rotational logging practices alter patterns of landscape-scale population abundance and genetic diversity of a forest-dwelling lizard (Eulamprus heatwolei) in south-eastern Australia. We sampled lizards (n = 407) at up to 48 sites across a chronosequence of logging disturbance intervals (<10 to >60 years after logging) to assess site-specific population changes and genetic diversity parameters. Lizard abundances exhibited a significant curvilinear response to time since logging, with decreased numbers following logging (<10 years), increased abundance as the forest regenerated (10–20 years), before decreasing again in older regenerated forest sites (>30 years). Lizard genetic diversity parameters were not significantly influenced by logging disturbance. These results suggest that logging practices, whilst inducing short-term changes to population abundance, had no measurable effects on the landscape-scale genetic diversity of E. heatwolei. These results are important as they demonstrate the value of monitoring for evaluating forest management efficacy, and the use of different population-level markers to make stronger inference about the potential impacts of logging activities.


Sign in / Sign up

Export Citation Format

Share Document