Diversity partitioning of a phytoplankton community in semiarid salterns

2016 ◽  
Vol 67 (2) ◽  
pp. 238 ◽  
Author(s):  
Raiane S. Costa ◽  
Joseline Molozzi ◽  
Luiz U. Hepp ◽  
Renato M. Rocha ◽  
José E. L. Barbosa

Salterns consist of a series of interconnected evaporators that form sectors in the salterns. Their operation generates an increasing saline gradient, which influences species diversity. The present study was conducted in three salterns, with the goal of evaluating the diversity partitioning of phytoplankton along the saline gradient. We identified 65 taxa; the species richness was similar among the salterns, with higher values occurring in initial sectors and a downward trend with increasing salinity. In the partitioning analysis, the α diversity contributed 33.8% of the total diversity. The diversity variance showed a strong reduction from the α to β1 (33.8–6.3%). At higher scales, the highest species richness was found between salt marshes; however, there was lower diversity and a decrease in similarity from the lower to the higher scale. Therefore, we demonstrated that the greater variance in phytoplankton richness was at higher scales.

Paleobiology ◽  
2007 ◽  
Vol 33 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Karen M. Layou

Paleobiological diversity is often expressed as α (within-sample), β (among-sample), and γ (total) diversities. However, when studying the effects of extinction on diversity patterns, only variations in α and γ diversities are typically addressed. A null model that examines changes in β diversity as a function of percent extinction is presented here.The model examines diversity in the context of a hierarchical sampling strategy that allows for the additive partitioning of γ diversity into mean α and β diversities at varying scales. Here, the sampling hierarchy has four levels: samples, beds, facies, and region; thus, there are four levels of α diversity (α1, α2, α3, α4) and three levels of β diversity (β1, β2, and β3). Taxa are randomly assigned to samples within the hierarchy according to probability of occurrence, and initial mean α and β values are calculated. A regional extinction is imposed, and the hierarchy is resampled from the remaining extant taxa. Post-extinction mean α and β values are then calculated.Both non-selective and selective extinctions with respect to taxon abundance yield decreases in α, β, and γ diversities. Non-selective extinction with respect to taxon abundance shows little effect on diversity partitioning except at the highest extinction magnitudes (above 75% extinction), where the contribution of α1 to total γ increases at the expense of β3, with β1 and β2 varying little with increasing extinction magnitude. The pre-extinction contribution of α1 to total diversity increases with increased probabilities of taxon occurrence and the number of shared taxa between facies. Both β1 and β2 contribute equally to total diversity at low occurrence probabilities, but β2 is negligible at high probabilities, because individual samples preserve all the taxonomic variation present within a facies. Selective extinction with respect to rare taxa indicates a constant increase in α1 and constant decrease in β3 with increasing extinction magnitudes, whereas selective extinction with respect to abundant taxa yields the opposite pattern of an initial decrease in α1 and increase in β3. Both β1 and β2 remain constant with increasing extinction for both cases of selectivity. By comparing diversity partitioning before and after an extinction event, it may be possible to determine whether the extinction was selective with respect to taxon abundances, and if so, whether that selectivity was against rare or abundant taxa.Field data were collected across a Late Ordovician regional extinction in the Nashville Dome of Tennessee, with sampling hierarchy similar to that of the model. These data agree with the abundant-selective model, showing declines in α, β, and γ diversities, and a decrease in α1 and increase in β3, which suggests this extinction may have targeted abundant taxa.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2021 ◽  
Vol 13 (14) ◽  
pp. 2649
Author(s):  
Hafiz Ali Imran ◽  
Damiano Gianelle ◽  
Michele Scotton ◽  
Duccio Rocchini ◽  
Michele Dalponte ◽  
...  

Plant biodiversity is an important feature of grassland ecosystems, as it is related to the provision of many ecosystem services crucial for the human economy and well-being. Given the importance of grasslands, research has been carried out in recent years on the potential to monitor them with novel remote sensing techniques. In this study, the optical diversity (also called spectral diversity) approach was adopted to check the potential of using high-resolution hyperspectral images to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species composition was surveyed and canopy hyperspectral data were acquired at two grassland sites: Monte Bondone (IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the University of Padova, Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a species-poor mixture). The relationship between biodiversity (species richness, Shannon’s, species evenness, and Simpson’s indices) and optical diversity metrics (coefficient of variation-CV and standard deviation-SD) was not consistent across the investigated grassland plant communities. Species richness could be estimated by optical diversity metrics with an R = 0.87 at the IT-PD species-poor site. In the more complex and species-rich grasslands at IT-MBo, the estimation of biodiversity indices was more difficult and the optical diversity metrics failed to estimate biodiversity as accurately as in IT-PD probably due to the higher number of species and the strong canopy spatial heterogeneity. Therefore, the results of the study confirmed the ability of spectral proxies to detect grassland α-diversity in man-made grassland ecosystems but highlighted the limitations of the spectral diversity approach to estimate biodiversity when natural grasslands are observed. Nevertheless, at IT-MBo, the optical diversity metric SD calculated from post-processed hyperspectral images and transformed spectra showed, in the red part of the spectrum, a significant correlation (up to R = 0.56, p = 0.004) with biodiversity indices. Spatial resampling highlighted that for the IT-PD sward the optimal optical pixel size was 1 cm, while for the IT-MBo natural grassland it was 1 mm. The random pixel extraction did not improve the performance of the optical diversity metrics at both study sites. Further research is needed to fully understand the links between α-diversity and spectral and biochemical heterogeneity in complex heterogeneous ecosystems, and to assess whether the optical diversity approach can be adopted at the spatial scale to detect β-diversity. Such insights will provide more robust information on the mechanisms linking grassland diversity and optical heterogeneity.


2013 ◽  
Vol 41 (1) ◽  
pp. 36 ◽  
Author(s):  
Liangjun HU ◽  
Qinfeng GUO

How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second, productivity  per se varies with community or ecosystem maturity. If diversity indeed drives productivity, the criterion of choosing appropriate measures for productivity is not available. Third, spatial scaling suggests that sampling based on small-plots may not be suitable for formulating species richness-productivity relationships (SRPRs). Thus, the long-standing assumption simply linking diversity with productivity and pursuing a generalizing pattern may not be robust. We argue that productivity, though defined as ‘the rate of biomass production’, has been measured in two ways environmental surrogates and biomass production leading to misinterpretations and difficulty in the pursuit of generalizable SRPRs. To tackle these issues, we developed an integrative theoretical paradigm encompassing richer biological and physical contexts and clearly reconciling the major processes of the systems, using proper productivity measures and sampling units. We conclude that loose interpretation and confounding measures of productivity may be the real root of current SRPR inconsistencies and debate.


2015 ◽  
Vol 75 (3) ◽  
pp. 628-637 ◽  
Author(s):  
FRA Câmara ◽  
O Rocha ◽  
EKR Pessoa ◽  
S Chellappa ◽  
NT Chellappa

AbstractThe present study focuses on the structure and function of phytoplankton community during periods of marked changes in hydrological traits, influenced by an atypical climatic event (La Niña) and its impact on Armando Ribeiro Gonçalves Reservoir of Rio Grande do Norte, situated in the Caatinga biome of northeastern Brazil. The main questions addressed were: What are the effects of environmental factors on the temporal variation of Morphologically Based Functional Group (MBFG) of phytoplankton community? How does the composition of cyanobacterial species shift in relation to high and low trends of phytoplankton diversity? The samples were collected monthly during 2008-2009 and analyzed for pH, temperature, electrical conductivity, dissolved oxygen content and the nutrients, such as, nitrate-nitrogen, ammoniacal nitrogen, total nitrogen and orthophosphate. Phytoplankton samples were collected for both qualitative and quantitative analyses to evaluate species richness index and species diversity index. The data was divided into two distinct hydrodynamic periods of instability and stability. The results demonstrate considerable changes in dissolved oxygen content, water transparency and nitrogen nutrients, which directly influenced the MBFG of phytoplankton community in space and time. The instability of reservoir water was caused by heavy rainfall, which exerts atypical external disturbances. The seasonal variation of MBFG demonstrates a change in cyanobacterial composition and their diversity during instability and stability periods. MBFG VII, composed by colonial cyanobacteria with mucilage, was associated with reduced values of electrical conductance and alterations in pH. The predominance of filamentous species with heterocyst (MBFG III) occurs only during the hydrodynamic stability period and did not show significant association with analyzed parameters. The co-dominance of MBGFs III, V and VII along with high species diversity of phytoplankton community occurred during the second hydrodynamic instability period which was associated with the reduction in water temperature. It is concluded that the decrease in cyanobacterial species dominance and the general increase in the diversity of phytoplankton community are influenced by pluvial anomaly. The higher water level during the period of pluvial anomaly resulted in nutrient pulse and the mixing of water column in the reservoir, which determined the MBPG phytoplankton community distribution.


2016 ◽  
Vol 16 (3) ◽  
Author(s):  
Felipe Augusto Trindade Gondim-Silva ◽  
Alessandra Rodrigues Santos Andrade ◽  
Rafael Oliveira Abreu ◽  
Jamile Santos Nascimento ◽  
Geovane Paixão Corrêa ◽  
...  

Abstract The Conde municipality is located in the northern coast of the state of Bahia (NC), northeastern Brazil, and is part of the Atlantic Tropical domain. The anuran fauna of the northern portion of the NC is still poorly known if compared to the southern portion. The Restinga is one of the predominant environments of the coastal plains of the NC and it is characterized essentially by presenting sandy soil covered by herbaceous and shrubby vegetation. The objective of this study was to determine the anuran species composition and diversity for the Restinga of the Conde municipality. Sampling was carried out at night by active search over four periods of five consecutive days each, two over the 'main rainy season' and two in a 'lesser rainy season', using 14 sample units (SUs) and five extra sample plots (EPs). We calculated dominance and species diversity using the Berger-Parker and Shannon-Wiener H' indices, respectively. We used accumulation curves and the Jackknife 1 estimator to estimate anuran species richness, considering only the data obtained from the SUs. We recorded 713 anuran specimens distributed within 33 species, 13 genera and five families (Bufonidae, Craugastoridae, Hylidae, Leptodactylidae and Microhylidae). The Hylidae and Leptodactylidae families had the highest species richness. Considering only the SUs (Jackknife 1 estimator in brackets), we recorded 28 species in the study area (33.9 ± 2.3), 13 in Shrubby Vegetation Zones - SVZ (20.8 ± 2.9) and 25 in Freshwater Wetland Zones - FWZ (28.9 ± 1.9). The abundance and species diversity of the FWZ (n = 638 specimens; H'= 2.4) were higher than those recorded for the SVZ (n = 52 specimens; H' = 1.9). The SVZ and FWZ showed distinct dominant species, wherein Pristimantis paulodutrai was the dominant species in SVZ and Scinax fuscomarginatus in FWZ. The Restinga of the Conde municipality stands out as the one with the highest anuran species richness already recorded considering only SVZ and FWZ. Moreover, its anuran species composition represented 55% of the anuran species known for the NC and included taxa common to three different morphoclimatic domains (Tropical Atlantic, Cerrado and Caatinga).


2007 ◽  
Vol 50 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Yzel Rondon Súarez ◽  
Sabrina Bigatão Valério ◽  
Karina Keyla Tondado ◽  
Alexandro Cezar Florentino ◽  
Thiago Rota Alves Felipe ◽  
...  

The influence of spatial, temporal and environmental factors on fish species diversity in headwater streams in Paraguay and Paraná basins, Brazil was examined. A total of 4,605 individuals were sampled, distributed in 60 species. The sampled streams in Paraná basin presented a larger total species richness (42) than Paraguay streams (40). However the estimated richness was larger in Paraguay basin (53) than Paraná streams (50). The streams of Paraná basin had a greater mean species richness and evenness, while more individuals per sample were found in the Paraguay basin. Difference between the sub-basins were found in the Paraguay basin, while for the basin of Paraná, richness and evenness vary significantly between the sub-basins, but the number of individuals varied seasonally. The most important environmental factors to species diversity and abundance were altitude, water temperature, stream width and stream depth for both the basins.


2011 ◽  
Vol 26 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Valentín D. Picasso ◽  
E. Charles Brummer ◽  
Matt Liebman ◽  
Philip M. Dixon ◽  
Brian J. Wilsey

AbstractCropping systems that rely on renewable energy and resources and are based on ecological principles could be more stable and productive into the future than current monoculture systems with serious unintended environmental consequences such as soil erosion and water pollution. In nonagricultural systems, communities with higher species diversity have higher productivity and provide other ecosystem services. However, communities of well-adapted crop species selected for biomass production may respond differently to increasing diversity. Diversity effects may be due to complementarity among species (complementary resource use and facilitative interactions) or positive selection effects (e.g., species with higher productivity dominate the mixture), and these effects may change over time or across environments. Our goal was to identify the ecological mechanisms causing diversity effects in a biodiversity experiment using agriculturally relevant species, and evaluate the implications for the design of sustainable cropping systems. We seeded seven perennial forage species in a replicated field experiment at two locations in Iowa, USA, and evaluated biomass productivity of monocultures and two- to six-species mixtures over 3 years after the establishment year under management systems of contrasting intensity: one or three harvests per year. Productivity increased with seeded species richness in all environments, and the positive relationship did not change over time. Polyculture overyielding was due to complementarity among species in the community rather than to selection effects of individual species. Complementarity increased as a log-linear function of species richness in all environments, and this trend was consistent across years. Legume–grass facilitation may explain much of this complementarity effect. Although individual species with high biomass production had a major effect on productivity of mixtures, the species producing the highest biomass in monoculture changed over the years in most environments. Furthermore, transgressive overyielding was observed and was more prevalent in later years, in some environments. We conclude that choosing a single well-adapted species for maximizing productivity may not be the best alternative over the long term and that high levels of species diversity should be included in the design of productive and ecologically sound agricultural systems.


Sign in / Sign up

Export Citation Format

Share Document