scholarly journals Energy - Momentum Tensors for Dispersive Electromagnetic Waves

1977 ◽  
Vol 30 (6) ◽  
pp. 533 ◽  
Author(s):  
RL Dewar

Classical relativistic field theory is used as a basis for a general discussion of the problem of splitting up the total energy–momentum tensor of a system into contributions from its component subsystems. Both the Minkowski and Abraham forms (including electrostriction) arise naturally in alternative split-up procedures applied to a non dispersive dielectric fluid. The case of an electromagnetic wave in a (spatially and temporally) dispersive medium in arbitrary but slowly varying motion is then treated. In the dispersive case the results cannot be found by replacing the dielectric constant ε with ε(κ, ω) but include derivatives with respect to the wave vector κ and the frequency ω. Ponderomotive force expressions are obtained and the perturbation in the total energy–momentum tensor due to a one-dimensional wavepacket is found. A nonlinear Schrödinger equation is obtained for the evolution of a three-dimensional wavepacket. Both hot and cold plasmas are treated.

2011 ◽  
Vol 26 (18) ◽  
pp. 3077-3090 ◽  
Author(s):  
BRADLY K. BUTTON ◽  
LEO RODRIGUEZ ◽  
CATHERINE A. WHITING ◽  
TUNA YILDIRIM

We show that the near horizon regime of a Kerr–Newman AdS (KNAdS) black hole, given by its two-dimensional analogue a là Robinson and Wilczek (Phys. Rev. Lett.95, 011303 (2005)), is asymptotically AdS2 and dual to a one-dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy–momentum tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein–Hawking entropy via Cardy's formula. Our derived central charge also agrees with the near extremal Kerr/CFT correspondence (Phys. Rev. D80, 124008 (2009)) in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two-dimensional analogue (RW2DA) to conformal matter.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950291 ◽  
Author(s):  
W. S. Daza ◽  
J. E. Drut ◽  
C. L. Lin ◽  
C. R. Ordóñez

We analyze, from a canonical quantum field theory (QFT) perspective, the problem of one-dimensional particles with three-body attractive interactions, which was recently shown to exhibit a scale anomaly identical to that observed in two-dimensional (2D) systems with two-body interactions. We study in detail the properties of the scattering amplitude including both bound and scattering states, using cutoff and dimensional regularization, and clarify the connection between the scale anomaly derived from thermodynamics to the nonvanishing non-relativistic trace of the energy–momentum tensor.


2014 ◽  
Vol 23 (06) ◽  
pp. 1460006 ◽  
Author(s):  
V. S. Olkhovsky

The formal mathematical analogy between time-dependent quantum equation for the nonrelativistic particles and time-dependent equation for the propagation of electromagnetic waves had been studied in [A. I. Akhiezer and V. B. Berestezki, Quantum Electrodynamics (FM, Moscow, 1959) [in Russian] and S. Schweber, An Introduction to Relativistic Quantum Field Theory, Chap. 5.3 (Row, Peterson & Co, Ill, 1961)]. Here, we deal with the time-dependent Schrödinger equation for nonrelativistic particles and with time-dependent Helmholtz equation for electromagnetic waves. Then, using this similarity, the tunneling and multiple internal reflections in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) particle and photon tunneling are studied. Finally, some conclusions and future perspectives for further investigations are presented.


2018 ◽  
Vol 15 (08) ◽  
pp. 1850135 ◽  
Author(s):  
Fassari Silvestro ◽  
Rinaldi Fabio ◽  
Viaggiu Stefano

In this paper, we exploit the technique used in [Albeverio and Nizhnik, On the number of negative eigenvalues of one-dimensional Schrödinger operator with point interactions, Lett. Math. Phys. 65 (2003) 27; Albeverio, Gesztesy, Hoegh-Krohn and Holden, Solvable Models in Quantum Mechanics (second edition with an appendix by P. Exner, AMS Chelsea Series 2004); Albeverio and Kurasov, Singular Perturbations of Differential Operators: Solvable Type Operators (Cambridge University Press, 2000); Fassari and Rinaldi, On the spectrum of the Schrödinger–Hamiltonian with a particular configuration of three one-dimensional point interactions, Rep. Math. Phys. 3 (2009) 367; Fassari and Rinaldi, On the spectrum of the Schrödinger–Hamiltonian of the one-dimensional harmonic oscillator perturbed by two identical attractive point interactions, Rep. Math. Phys. 3 (2012) 353; Albeverio, Fassari and Rinaldi, The Hamiltonian of the harmonic oscillator with an attractive-interaction centered at the origin as approximated by the one with a triple of attractive-interactions, J. Phys. A: Math. Theor. 49 (2016) 025302; Albeverio, Fassari and Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive [Formula: see text]-impurities symmetrically situated around the origin II, Nanosyst. Phys. Chem. Math. 7(5) (2016) 803; Albeverio, Fassari and Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive [Formula: see text]-impurities symmetrically situated around the origin, Nanosyst. Phys. Chem. Math. 7(2) (2016) 268] to deal with delta interactions in a rigorous way in a curved spacetime represented by a cosmic string along the [Formula: see text] axis. This mathematical machinery is applied in order to study the discrete spectrum of a point-mass particle confined in an infinitely long cylinder with a conical defect on the [Formula: see text] axis and perturbed by two identical attractive delta interactions symmetrically situated around the origin. We derive a suitable approximate formula for the total energy. As a consequence, we found the existence of a mixing of states with positive or zero energy with the ones with negative energy (bound states). This mixture depends on the radius [Formula: see text] of the trapping cylinder. The number of quantum bound states is an increasing function of the radius [Formula: see text]. It is also interesting to note the presence of states with zero total energy (quasi free states). Apart from the gravitational background, the model presented in this paper is of interest in the context of nanophysics and graphene modeling. In particular, the graphene with double layer in this framework, with the double layer given by the aforementioned delta interactions and the string on the [Formula: see text]-axis modeling topological defects connecting the two layers. As a consequence of these setups, we obtain the usual mixture of positive and negative bound states present in the graphene literature.


An elementary discussion is given regarding the momentum associated with a photon in a dispersive medium. The results of the Jones-Richards (1954) and the Jones-Leslie (1978) experiments are taken to confirm that, if the momentum of the photon in vacuo is p , the total momentum associated with the same photon in a dispersive medium of phase refractive index n ϕ is n ϕ p (as the Minkowski energy-momentum tensor would imply). It is then argued that a portion p/ng of this momentum may be regarded as ‘electromagnetic’ ( pace the Abraham tensor) and the remainder n ϕ p (1 — 1/ n ϕ n g ) as ‘mechanical’ and bodily present in the medium, where n ϕ is the ‘group refractive index’. This leads to plausible results for an artificial dielectric where n ϕ n g = 1, and suggests an element of reciprocity between the ‘drag’ of light on the medium through which it is passing and the ‘aether drag ’ of a moving medium on light, since the drag coefficient (1 — 1/ n ϕ n g )enters into both cases.


1980 ◽  
Vol 58 (8) ◽  
pp. 1163-1170 ◽  
Author(s):  
Gérard A. Maugin

Arguments recently proposed by Kranyš concerning the nondistinguishability between Abraham's and Minkowski's electromagnetic contributions to the total energy-momentum tensor of the same relativistic, thermodynamically closed system are extended to other electromagnetic energy-momentum tensors (as proposed by Grot and Eringen and de Groot and Suttorp). The adjustment of the corresponding "matter" contribution, which occurs in each element of the canonical space-time decomposition of the total energy-momentum tensor, is exhibited in those different cases. For dissipation-free systems this adjustment can be achieved for each case by means of an ad hoc Legendre transformation on the internal energy density. The arguments used do not presuppose any isotropy and linearity of the medium and can be readily extended to the cases of media with hysteresis and media endowed with intrinsic spins, be they of a fluid-like or solid-like type of mechanical behavior.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Luigi Del Debbio ◽  
Elizabeth Dobson ◽  
Andreas Jüttner ◽  
Ben Kitching-Morley ◽  
Joseph K. L. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document