scholarly journals Introduction

1993 ◽  
Vol 46 (3) ◽  
pp. 329
Author(s):  
D Neilson ◽  
MP Das

The subjects for this workshop were nanostructures and quasi-two-dimensional systems. Artificial nanostructures have structure on the scale of nanometres (1O~9 m). The nanometre represents a limit on the miniaturisation of artificial structures since atomic diameters are of this scale. Two-dimensional systems are atomically thin layers, usually of electrons embedded in a semiconductor substrate. These fascinating systems owe their existence to the rapid advances within the last ten years in electronic device miniaturisation and manufacture. Spectacular as the technological advances have been, the focus of the workshop was not on these achievements themselves, but on the opportunities the technology provides to think up and build artificial systems having exotic physical properties that give us insight into structure on a quantum scale. Since the atomic scale is determined by the dictates of quantum mechanics it is not surprising that artificial structures on this scale should have properties which are dominated by quantum mechanical effects and strong correlations, and that these often generate novel ground states.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
László Pósa ◽  
Zoltán Balogh ◽  
Dávid Krisztián ◽  
Péter Balázs ◽  
Botond Sánta ◽  
...  

AbstractGraphene nanogaps are considered as essential building blocks of two-dimensional electronic circuits, as they offer the possibility to interconnect a broad range of atomic-scale objects. Here we provide an insight into the microscopic processes taking place during the formation of graphene nanogaps through the detailed analysis of their low-frequency noise properties. Following the evolution of the noise level, we identify the fundamentally different regimes throughout the nanogap formation. By modeling the resistance and bias dependence of the noise, we resolve the major noise-generating processes: atomic-scale junction-width fluctuations in the nanojunction regime and sub-atomic gap-size fluctuations in the nanogap regime. As a milestone toward graphene-based atomic electronics, our results facilitate the automation of an optimized electrical breakdown protocol for high-yield graphene nanogap fabrication.


Science ◽  
2019 ◽  
Vol 363 (6423) ◽  
pp. 145-148 ◽  
Author(s):  
K. Gopinadhan ◽  
S. Hu ◽  
A. Esfandiar ◽  
M. Lozada-Hidalgo ◽  
F. C. Wang ◽  
...  

It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na+and Cl−. Only protons (H+) can diffuse through monolayer water inside the capillaries. These observations improve our understanding of molecular transport at the atomic scale.


1994 ◽  
Vol 116 (2) ◽  
pp. 225-231 ◽  
Author(s):  
D. E. Kim ◽  
N. P. Suh

Molecular dynamics (MD) simulation studies of two-dimensional atomic-scale frictional force are presented. The motivation for this work is to gain insight into the effects of interatomic forces on the frictional phenomena. Instantaneous friction coefficients are calculated for an atom scanning across the surface of a two-dimensional Lennard-Jones type crystal in both static and dynamic modes. It is found that net frictional force can arise even in the absence of adhesive interaction between the scanning atom and the substrate. Furthermore, in the case of nondestructive sliding the frictional interaction leads to increase in the substrate temperature which can be calculated.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 51-60
Author(s):  
HONGHI TRAN ◽  
DANNY TANDRA

Sootblowing technology used in recovery boilers originated from that used in coal-fired boilers. It started with manual cleaning with hand lancing and hand blowing, and evolved slowly into online sootblowing using retractable sootblowers. Since 1991, intensive research and development has focused on sootblowing jet fundamentals and deposit removal in recovery boilers. The results have provided much insight into sootblower jet hydrodynamics, how a sootblower jet interacts with tubes and deposits, and factors influencing its deposit removal efficiency, and have led to two important innovations: fully-expanded sootblower nozzles that are used in virtually all recovery boilers today, and the low pressure sootblowing technology that has been implemented in several new recovery boilers. The availability of powerful computing systems, superfast microprocessors and data acquisition systems, and versatile computational fluid dynamics (CFD) modeling capability in the past two decades has also contributed greatly to the advancement of sootblowing technology. High quality infrared inspection cameras have enabled mills to inspect the deposit buildup conditions in the boiler during operation, and helped identify problems with sootblower lance swinging and superheater platens and boiler bank tube vibrations. As the recovery boiler firing capacity and steam parameters have increased markedly in recent years, sootblowers have become larger and longer, and this can present a challenge in terms of both sootblower design and operation.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ning Zhao ◽  
Udo Schwingenschlögl

AbstractUtilizing a two-dimensional material in an electronic device as channel layer inevitably involves the formation of contacts with metallic electrodes. As these contacts can dramatically affect the behavior of the device, we study the electronic properties of monolayer Janus MoSSe in contact with different metallic electrodes by first-principles calculations, focusing on the differences in the characteristics of contacts with the two sides of MoSSe. In particular, we demonstrate that the Fermi level pinning is different for the two sides of MoSSe, with the magnitude resembling that of MoS2 or MoSe2, while both sides can form Ohmic contacts with common electrode materials without any further adaptation, which is an outstanding advantage over MoS2 and MoSe2.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Zhao ◽  
Yihang Zhang ◽  
Rongrong Sun ◽  
Wen-Sheng Zhao ◽  
Yue Hu ◽  
...  

A compact frequency selective surface (FSS) for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency) and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.


2020 ◽  
Vol 12 (8) ◽  
pp. 168781402093046 ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail

Entropy generation in bioconvection two-dimensional steady incompressible non-Newtonian Oldroyd-B nanofluid with Cattaneo–Christov heat and mass flux theory is investigated. The Darcy–Forchheimer law is used to study heat and mass transfer flow and microorganisms motion in porous media. Using appropriate similarity variables, the partial differential equations are transformed into ordinary differential equations which are then solved by homotopy analysis method. For an insight into the problem, the effects of various parameters on different profiles are shown in different graphs.


2005 ◽  
Vol 287 ◽  
pp. 233-241 ◽  
Author(s):  
Paul F. Becher ◽  
Gayle S. Painter ◽  
Naoya Shibata ◽  
Hua Tay Lin ◽  
Mattison K. Ferber

Silicon nitride ceramics are finding uses in numerous engineering applications because of their tendency to form whisker-like microstructures that can overcome the inherent brittle nature of ceramics. Studies now establish the underlying microscopic and atomic-scale principles for engineering a tough, strong ceramic. The theoretical predictions are confirmed by macroscopic observations and atomic level characterization of preferential segregation at the interfaces between the grains and the continuous nanometer thick amorphous intergranular film (IGF). Two interrelated factors must be controlled for this to occur including the generation of the elongated reinforcing grains during sintering and debonding of the interfaces between the reinforcing grains and the matrix. The reinforcing grains can be controlled by (1) seeding with beta particles and (2) the chemistry of the additives, which also can influence the interfacial debonding conditions. In addition to modifying the morphology of the reinforcing grains, it now appears that the combination of preferential segregation and strong bonding of the additives (e.g., the rare earths, RE) to the prism planes can also result in sufficiently weakens the bond of the interface with the IGF to promote debonding. Thus atomic-scale engineering may allow us to gain further enhancements in fracture properties. This new knowledge will enable true atomic-level engineering to be joined with microscale tailoring to develop the advanced ceramics that will be required for more efficient engines, new electronic device architectures and composites.


Author(s):  
L F Campanile ◽  
R Jähne ◽  
A Hasse

Classical beam models do not account for partial restraint of anticlastic bending and are therefore inherently inaccurate. This article proposes a modification of the exact Bernoulli–Euler equation which allows for an exact prediction of the beam's deflection without the need of two-dimensional finite element calculations. This approach offers a substantial reduction in the computational effort, especially when coupled with a fast-solving schema like the circle-arc method. Besides the description of the new method and its validation, this article offers an insight into the somewhat disregarded topic of anticlastic bending by a short review of the published theories and a selection of representative numerical results.


Sign in / Sign up

Export Citation Format

Share Document