Elevated Atmosphere Partial Pressure of CO2 and Plant Growth. III. Interactions Between Triticum aestivum (C3) and Echinochloa frumentacea (C4) During Growth in Mixed Culture Under Different CO2, N Nutrition and Irradiance Treatments, With Emphasis on Below-Ground Responses Estimated Using the δ13C Value of Root Biomass

1991 ◽  
Vol 18 (2) ◽  
pp. 137 ◽  
Author(s):  
SC Wong ◽  
CB Osmond

Wheat (Triticum aestivum L.), a C3 species, and Japanese millet (Echinochloa frumentacea Link), a C4 species, were grown in pots in monoculture and mixed culture (2 C3 : 1 C4 and 1 C3:2 C4) at two ambient partial pressures of CO2 (320 and 640 μbar), two photosynthetic photon flux densities (PPFDs) (daily maximum 2000 and 500 �mol m-2 s-1) and two levels of nitrogen nutrition (12 mM and 2 mM NO3-). Growth of shoots of both components in mixed culture was measured by physical separation, and the proportions of root biomass due to each component were calculated from δ13C value of total root biomass. In air (320 μbar CO2) at high PPFD and with high root zone-N, the shoot biomass of C3 and C4 components at the first harvest (28 days) was in proportion to the sowing ratio. However, by the second harvest (36 days) the C4 component predominated in both mixtures. Under the same conditions, but with low PPFD, C3 plants predominated at the first harvest but C4 plants had over- taken them by the time of the second harvest. Elevated atmospheric CO2 (640 μbar) stimulated shoot growth of Triticum in 15 of 16 treatment combinations and the stimulation was greatest in plants provided with low NO3-. Root growth of the C3 plants was generally stimulated by elevated CO2, but was only occasionally sensitive to the presence of C4 plants in mixed culture. However, growth of the C4 plants was often sensitive to the presence of C3 plants in mixed culture. In mixed cultures, elevated CO2 plants stimulated growth of C4 plants at high PPFD, high-N and in all low-N treatments but this was insufficient to offset a marked decline in shoot growth with increasing proportion of C3 plants in mixed cultures. The unexpected stimulation of growth of C4 plants by elevated CO2 was correlated with more negative δ13C values of C4 root biomass, suggesting a partial failure of the CO2 concentrating mechanism of C4 photosynthesis in Echinochloa under low-N. These experiments show that for these species nitrogen was more important than light or elevated pCO2 in determining the extent of competitive interactions in mixed culture.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1921
Author(s):  
Md. Parvez Anwar ◽  
A. K. M. Mominul Islam ◽  
Sabina Yeasmin ◽  
Md. Harun Rashid ◽  
Abdul Shukor Juraimi ◽  
...  

Crop production is a constant battle with weeds, in which weeds, generally, are victorious. Therefore, rather than channeling our efforts into the development of a “silver bullet” to control weeds, the focus should be on sustainable weed management in both natural- and agro-ecosystems. However, sustainable weed management can be a challenge in the context of global climate change. Over the past few decades, global climate change, mostly indicated by phenomena such as increased atmospheric temperature and elevated CO2 levels, is evident due to human activities and natural events. These phenomena also affect regional/local climate, resulting in significant influences on the agricultural systems of a particular region. Rising CO2 levels may give comparative advantages to C3 plants through increased photosynthesis, biomass production and yield, compared to C4 plants. Plants with C4 photosynthetic pathways, on the other hand, are likely to benefit more from rising global temperatures than C3 plants. Thus, the differential responses of C3 and C4 plants to climate change may alter crop–weed interactions and competition outcomes, most likely at the expense of the crop. Climate change will likely cause shifts in weed community compositions, their population dynamics, life cycle, phenology, and infestation pressure. Some weed species may go extinct, while some others may become more aggressive invaders. Weeds are, generally, colonizers and have some unique biological traits and ecological amplitudes that enable them to successfully dominate crops in a habitat with changed environmental conditions. Moreover, climate shifts, especially erratic rainfall and drought, may affect herbicide selectivity and efficacy or the success of bio-control agents resulting in an establishment of a mixed and complex population of C3 and C4 weed species adding to the complexity of weed management. Although elevated CO2 levels will stimulate the productivity of major C3 crops, most troublesome agricultural weeds will likely be more responsive to a rise in CO2 than crops, and thus may dominate the agro-ecosystem. It is predicted that, as temperature rises, the majority of the C4 weeds will flourish and will pose serious crop yield losses. Understanding and assessment of the impact of simultaneous changes in multiple climate factors and their complex interactions on crops and weeds are therefore necessary to formulate an adaptive weed management approach and build resilience. Moreover, strategic policies and strong actions need to be taken to reduce the root causes of CO2 and other greenhouse gas emissions to minimize the impact of climate change on weed biology and management.


2008 ◽  
Vol 5 (2) ◽  
pp. 1795-1823 ◽  
Author(s):  
G. Wang ◽  
X. Feng ◽  
J. Han ◽  
L. Zhou ◽  
W. Tan ◽  
...  

Abstract. The relative contributions of C3 and C4 plants to vegetation at a given locality may be estimated by means of δ13C of soil organic matter. This approach holds great potential for paleoecological reconstruction using paleosols. However, two uncertainties exist, which limits the accuracy of this application. One is 13C enrichment as plant carbon becomes incorporated into soil organic matter. The other is due to environmental influences on δ13C of plants. Two types of data were collected and analyzed with an objective of narrowing the error of paleovegetation reconstruction. First, we investigated δ13C variations of 557 C3 and 136 C4 plants along a precipitation gradient in North China. A strong negative relationship is found between the δ13C value of C3 plants averaged for each site and the annual precipitation with a coefficient of −0.40‰/100 mm, while no significant coefficients were found for C4 plants. Second, we measured δ13C of soil organic matters for 14 soil profiles at three sites. The isotopic difference between vegetation and soil organic matter are evaluated to be 1.8‰ for the surface soil and 2.8‰ for the soil at the bottom of soil profiles. Using the new data we conducted a sample reconstruction of paleovegetation at the central Chinese Loess Plateau during the Holocene and the Last Glaciation, and conclude that, without corrections for 13C enrichment by decomposition, the C4 abundance would be overestimated. The importance and uncertainties of other corrections are also discussed.


2008 ◽  
Vol 5 (5) ◽  
pp. 1325-1337 ◽  
Author(s):  
G. Wang ◽  
X. Feng ◽  
J. Han ◽  
L. Zhou ◽  
W. Tan ◽  
...  

Abstract. The relative contributions of C3 and C4 plants to vegetation at a given locality may be estimated by means of δ13C of soil organic matter. This approach holds a great potential for paleoecological reconstruction using paleosols. However, two main uncertainties exist, which limits the accuracy of this application. One is δ13C-enrichment as the plant carbon becomes incorporated into soil organic matter. The other is due to environmental influences on δ13C of plants. Two types of data were collected and analyzed with an objective of narrowing the error of paleovegetation reconstruction. First, we investigated δ13C variations of 557 C3 and 136 C4 plants along a precipitation gradient in North China. A strong negative correlation is found between the δ13C value of C3 plants averaged for each site and the annual precipitation with a coefficient of −0.40‰/100mm, while no significant coefficients were found for C4 plants. Second, we measured δ13C of soil organic matters for 14 soil profiles at three sites. The isotopic difference between vegetation and soil organic matter are evaluated to be 1.8‰ for the surface soil and 2.8‰ for the soil at the bottom of soil profiles. We conducted a sample reconstruction of paleovegetation at the central Chinese Loess Plateau during the Holocene and the Last Glacial (LG), and conclude that, without corrections for δ13C-enrichment by decomposition, the C4 abundance would be overestimated. The importance and uncertainties of other corrections are also discussed.


Rumen ciliates still have mysterious secrets and influences in ruminants. This study investigated the effect of transfaunation of pure and mixed cultures of rumen ciliates on physical clinical examination, selected serum parameters and milk profile in defaunated lactating dairy goats. A number of 8 Baladi native breed goats were randomly classified into two groups each one containing 4 goats. Pure culture group was transfaunated with 6 ml of pure culture of Holotricha spp., while mixed culture group was transfaunated with 6 ml of mixed culture of 81.85% Holotricha and 18.15% Ophryoscolex spp. once weekly for three consecutive weeks, after defaunation of both groups using 30 ml of 8% SLS for two consecutive days. Serum and milk samples were collected weekly for three successive weeks to study effect of type of ciliate culture, duration of transfaunation and their interaction. Results revealed that transfaunation of pure and mixed cultures of rumen ciliates had no effect on physical examination with minimal non-significant improvement of calcium, inorganic phosphorous, total protein and globulin in serum of defaunated goats. Transfaunation of pure or mixed cultures of rumen ciliates within three weeks could not improve significantly decreased milk fat % of defaunated goats without any effect on other measured milk profile parameters. It is concluded that further investigations on transfaunation without prior defaunation should be performed using different pure and mixed cultures of rumen ciliates for therapeutic and productive purposes.


1939 ◽  
Vol 29 (2) ◽  
pp. 302-305 ◽  
Author(s):  
E. H. Richards

1. A study was made of nitrogen-fixation byAzotobacter chroococcumalone in a medium containing dextrose (which it can utilize) and in mixture with a coliform organism on a medium containing no carbohydrate except starch, whichAzotobactercannot utilize unless it be hydrolysed by the coliform organism or some other agency.2. The amount of nitrogen fixed in the mixed cultures was found to be maximal at two temperatures, and a discussion is given of the causes thought to be operative in producing the double maximum.


2007 ◽  
Vol 34 (12) ◽  
pp. 1137 ◽  
Author(s):  
Brian J. Atwell ◽  
Martin L. Henery ◽  
Gordon S. Rogers ◽  
Saman P. Seneweera ◽  
Marie Treadwell ◽  
...  

We report on the relationship between growth, partitioning of shoot biomass and hydraulic development of Eucalyptus tereticornis Sm. grown in glasshouses for six months. Close coordination of stem vascular capacity and shoot architecture is vital for survival of eucalypts, especially as developing trees are increasingly subjected to spasmodic droughts and rising atmospheric CO2 levels. Trees were exposed to constant soil moisture deficits in 45 L pots (30–50% below field capacity), while atmospheric CO2 was raised to 700 μL CO2 L–1 in matched glasshouses using a hierarchical, multi-factorial design. Enrichment with CO2 stimulated shoot growth rates for 12–15 weeks in well-watered trees but after six months of CO2 enrichment, shoot biomasses were not significantly heavier (30% stimulation) in ambient conditions. By contrast, constant drought arrested shoot growth after 20 weeks under ambient conditions, whereas elevated CO2 sustained growth in drought and ultimately doubled the shoot biomass relative to ambient conditions. These growth responses were achieved through an enhancement of lateral branching up to 8-fold due to CO2 enrichment. In spite of larger transpiring canopies, CO2 enrichment also improved the daytime water status of leaves of droughted trees. Stem xylem development was highly regulated, with vessels per unit area and cross sectional area of xylem vessels in stems correlated inversely across all treatments. Furthermore, vessel numbers related to the numbers of leaves on lateral branches, broadly supporting predictions arising from Pipe Model Theory that the area of conducting tissue should correlate with leaf area. Diminished water use of trees in drought coincided with a population of narrower xylem vessels, constraining hydraulic capacity of stems. Commensurate with the positive effects of elevated CO2 on growth, development and leaf water relations of droughted trees, the capacity for long-distance water transport also increased.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Juan Piñeiro ◽  
Raúl Ochoa-Hueso ◽  
Manuel Delgado-Baquerizo ◽  
Silvan Dobrick ◽  
Peter B. Reich ◽  
...  

2017 ◽  
Vol 75 ◽  
pp. 151-157 ◽  
Author(s):  
Pramesha Madurangi S. Arachchige ◽  
Ching-Seng Ang ◽  
Marc E. Nicolas ◽  
Joe Panozzo ◽  
Glenn Fitzgerald ◽  
...  

1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document