Expression of Bcl-2 and 3-ß hydroxysteroid dehydrogenase protein during oocyte and follicle development in fetal and post-natal pig ovaries

1999 ◽  
Vol 11 (8) ◽  
pp. 463 ◽  
Author(s):  
Wesley M. Garrett ◽  
H. David Guthrie

The fetal and post-natal development of the pig ovary involves both proliferation and apoptotic loss of germ cells, follicle formation and growth, and the initiation of oocyte meiotic maturation. The present study measured the expression of the proto-oncogene Bcl-2 immunohistochemically on paraffin sections of pig ovaries to determine its relationship with folliculogenesis on Days 50 and 80 post coitum (p.c.) and on Days 1, 21, and 56 post partum (p.p.). The expression of the steroidogenic enzyme 3β-hydroxy-steroid dehydrogenase (3βHSD) was used to determine the lineages of the cells forming the ovarian follicles, and the expression of the cell proliferation-associated nuclear antigen Ki-67 was used to determine germ cell proliferation and the initiation of follicle growth. Expression of Ki-67 showed that many oogonia were proliferating on Days 50 and 80 p.c. Granulosa cells were more proliferative on Day 56 p.p. than at any other stage; Ki-67 was expressed in 70% of growing follicles and granulosa cells had a 3% mean staining index per section. Less than 4% of germ cells and follicles had morphological signs of degeneration during the period of the study. Bcl-2 was most abundant on Days 21 p.p. and 56 p.p.; staining was localized to stromal cells among follicles and in small clusters in the cortical–medullary junction (CMJ). 3βHSD staining on Day 50 p.c. was seen in cords of stromal cells within the medulla of the ovary, and in the stromal cells investing the oogonial nests. On Days 80 p.c., 1 p.p., 21 p.p., and 56 p.p., 3βHSD was expressed in the granulosa cells of primary or primordial follicles at the CMJ. Production of Bcl-2 by somatic cells may support germ cell and preantral follicle survival.

Reproduction ◽  
2000 ◽  
pp. 235-242 ◽  
Author(s):  
WM Garrett ◽  
SO Mack ◽  
RM Rohan ◽  
HD Guthrie

In situ hybridization was used on frozen tissue sections with digoxigenin-labelled antisense riboprobes to inhibin/activin alpha and beta(A) subunits to determine whether inhibin/activin subunit mRNA expression was associated with development of growing, steroidogenically active follicles during follicle recruitment after ovulation. Cell proliferation-associated nuclear antigen Ki-67 protein and cytochrome P450 aromatase expression in granulosa cells were determined immunohistochemically and used as markers for granulosa cell proliferation and steroidogenesis, respectively, on days 3, 5 and 7 after the onset of oestrus. The amounts of inhibin/activin alpha and beta(A) subunit mRNA and P450 aromatase protein were greater (102, 93, and 238%, respectively; P < 0.05) in medium than in small non-atretic follicles and were positively correlated with Ki-67 and with each other. Inhibin/activin alpha and beta(A) mRNA, P450 aromatase, and Ki-67 in granulosa cells were reduced by 66-83% (P < 0.001) in atretic follicles compared with non-atretic follicles. In addition, inhibin/activin alpha and beta(A) mRNA and P450 aromatase in small (1-2 mm) non-atretic follicles decreased (P < 0.05) between day 3 and day 7 independently of morphological or biochemical signs of atresia. The pattern of inhibin/activin subunit mRNA expression supports the notion that activin and inhibin have roles in growth and steroidogenesis in follicle recruitment during the early luteal phase of the oestrous cycle.


2019 ◽  
Author(s):  
Jun-Jie Wang ◽  
Wei Ge ◽  
Qiu-Yue Zhai ◽  
Jing-Cai Liu ◽  
Xiao-Wen Sun ◽  
...  

AbstractPrimordial follicle assembly in mammals occurs at perinatal ages and largely determines the ovarian reserve available to support the reproductive lifespan. The primordial follicle structure is generated by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time-series on mouse ovaries coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to PD3 are reported for the first time. The time frame of analysis comprises the breakdown of germ cell cysts and the assembly of primordial follicles. Confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified ten distinct gene clusters associated to germ cells and eight to granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. Building single-cell pseudo temporal trajectories five states and two branch points of fate transition for the germ cells, and three states and one branch point for the granulosa cells were revealed. Moreover, GO and ClueGO term enrichment enabled identifying biological processes, molecular functions and cellular components more represented in germ cells and granulosa cells or common to both cell types at each specific stage. Finally, by SCENIC algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell specific transcription programs throughout the investigated period.


2021 ◽  
Vol 22 (4) ◽  
pp. 2047
Author(s):  
Nina Schmid ◽  
Kim-Gwendolyn Dietrich ◽  
Ignasi Forne ◽  
Alexander Burges ◽  
Magdalena Szymanska ◽  
...  

Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1–7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.


Endocrinology ◽  
2007 ◽  
Vol 149 (4) ◽  
pp. 1813-1819 ◽  
Author(s):  
Eri Shiraishi ◽  
Norifumi Yoshinaga ◽  
Takeshi Miura ◽  
Hayato Yokoi ◽  
Yuko Wakamatsu ◽  
...  

Müllerian inhibiting substance (MIS) is a glycoprotein belonging to the TGF-β superfamily. In mammals, MIS is responsible for the regression of Müllerian ducts in the male fetus. However, the role of MIS in gonadal sex differentiation of teleost fish, which have no Müllerian ducts, has yet to be clarified. In the present study, we examined the expression pattern of mis and mis type 2 receptor (misr2) mRNAs and the function of MIS signaling in early gonadal differentiation in medaka (teleost, Oryzias latipes). In situ hybridization showed that both mis and misr2 mRNAs were expressed in the somatic cells surrounding the germ cells of both sexes during early sex differentiation. Loss-of-function of either MIS or MIS type II receptor (MISRII) in medaka resulted in suppression of germ cell proliferation during sex differentiation. These results were supported by cell proliferation assay using 5-bromo-2′-deoxyuridine labeling analysis. Treatment of tissue fragments containing germ cells with recombinant eel MIS significantly induced germ cell proliferation in both sexes compared with the untreated control. On the other hand, culture of tissue fragments from the MIS- or MISRII-defective embryos inhibited proliferation of germ cells in both sexes. Moreover, treatment with recombinant eel MIS in the MIS-defective embryos dose-dependently increased germ cell number in both sexes, whereas in the MISRII-defective embryos, it did not permit proliferation of germ cells. These results suggest that in medaka, MIS indirectly stimulates germ cell proliferation through MISRII, expressed in the somatic cells immediately after they reach the gonadal primordium.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 697-706 ◽  
Author(s):  
Fuminori Kimura ◽  
Lara M. Bonomi ◽  
Alan L. Schneyer

Abstract Follistatin (FST) is an antagonist of activin and related TGFβ superfamily members that has important reproductive actions as well as critical regulatory functions in other tissues and systems. FST is produced as three protein isoforms that differ in their biochemical properties and in their localization within the body. We created FST288-only mice that only express the short FST288 isoform and previously reported that females are subfertile, but have an excess of primordial follicles on postnatal day (PND) 8.5 that undergo accelerated demise in adults. We have now examined germ cell nest breakdown and primordial follicle formation in the critical PND 0.5–8.5 period to test the hypothesis that the excess primordial follicles derive from increased proliferation and decreased apoptosis during germ cell nest breakdown. Using double immunofluorescence microscopy we found that there is virtually no germ cell proliferation after birth in wild-type or FST288-only females. However, the entire process of germ cell nest breakdown was extended in time (through at least PND 8.5) and apoptosis was significantly reduced in FST288-only females. In addition, FST288-only females are born with more germ cells within the nests. Thus, the excess primordial follicles in FST288-only mice derive from a greater number of germ cells at birth as well as a reduced rate of apoptosis during nest breakdown. These results also demonstrate that FST is critical for normal regulation of germ cell nest breakdown and that loss of the FST303 and/or FST315 isoforms leads to excess primordial follicles with accelerated demise, resulting in premature cessation of ovarian function.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1606-1615 ◽  
Author(s):  
Monica M. Laronda ◽  
J. Larry Jameson

Abstract The X-linked Sox3 gene encodes a member of the Sry high-mobility group box proteins, which play a role in many developmental processes including neurogenesis and testis development. This study further examined the role of Sox3 in spermatogenesis. Males without Sox3 expression exhibited a similar number of germ cell nuclear antigen-positive germ cells at 1, 5, and 10 d postpartum (dpp) compared to their wild-type littermates, but there was significant germ cell depletion by 20 dpp. However, spermatogenesis later resumed and postmeiotic germ cells were observed by 56 dpp. The VasaCre transgene was used to generate a germ cell-specific deletion of Sox3. The phenotype of the germ cell-specific Sox3 knockout was similar to the ubiquitous knockout, indicating an intrinsic role for Sox3 in germ cells. The residual germ cells in 20 dpp Sox3−/Y males were spermatogonia as indicated by their expression of neurogenin3 but not synaptonemal complex protein 3, which is expressed within cells undergoing meiosis. RNA expression analyses corroborated the histological analyses and revealed a gradual transition from relatively increased expression of spermatogonia genes at 20 dpp to near normal expression of genes characteristic of undifferentiated and meiotic germ cells by 84 dpp. Fluorescent-activated cell sorting of undifferentiated (ret tyrosine kinase receptor positive) and differentiated (kit receptor tyrosine kinase-positive) spermatogonia revealed depletion of differentiated spermatogonia in Sox3−/Y tubules. These results indicate that Sox3 functions in an intrinsic manner to promote differentiation of spermatogonia in prepubertal mice but it is not required for ongoing spermatogenesis in adults. The Sox3−/Y males provide a unique model for studying the mechanism of germ cell differentiation in prepubertal testes.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 317-321 ◽  
Author(s):  
Barbara C. Vanderhyden

Investigations of strains of mice defective in germ cell development have revealed the importance of oocytes for the initial stages of folliculogenesis (Pellaset al., 1991; Huanget al., 1993). Various aspects of follicular development are dependent upon and/or influenced by the presence of oocytes, including granulosa cell proliferation (Vanderhydenet al., 1990, 1992) and cumulus expansion (Buccioneet al., 1990; Salustriet al., 1990; Vanderhydenet al., 1990; Vanderhyden, 1993). We are investigating the possibility that oocytes influence one of the primary functions of granulosa cells: steroidogenesis. In many species, granulosa cells removed from preovulatory follicles luteinisein vitro(Channinget al., 1982), presumably due to loss of contact with follicular luteinisation inhibitory factor(s). Indeed, follicular fluid can prevent granulosa cell luteinisationin vitro(Ledwitz-Rigbyet al., 1977). Follicular fluid, however, may simply be the medium for transport of factors secreted by oocytes to regulate granulosa cell activities.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Cristine de Paula Nascimento-Castro ◽  
Ana Claudia Wink ◽  
Victor Silva da Fônseca ◽  
Claudia Daniele Bianco ◽  
Elisa C. Winkelmann-Duarte ◽  
...  

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a trinucleotide expansion in the HD gene, resulting in an extended polyglutamine tract in the protein huntingtin. HD is traditionally viewed as a movement disorder, but cognitive and neuropsychiatric symptoms also contribute to the clinical presentation. Depression is one of the most common psychiatric disturbances in HD, present even before manifestation of motor symptoms. Diagnosis and treatment of depression in HD-affected individuals are essential aspects of clinical management in this population, especially owing to the high risk of suicide. This study investigated whether chronic administration of the antioxidant probucol improved motor and affective symptoms as well as hippocampal neurogenic function in the YAC128 transgenic mouse model of HD during the early- to mild-symptomatic stages of disease progression. The motor performance and affective symptoms were monitored using well-validated behavioral tests in YAC128 mice and age-matched wild-type littermates at 2, 4, and 6 months of age, after 1, 3, or 5 months of treatment with probucol (30 mg/kg/day via water supplementation, starting on postnatal day 30). Endogenous markers were used to assess the effect of probucol on cell proliferation (Ki-67 and proliferation cell nuclear antigen (PCNA)) and neuronal differentiation (doublecortin (DCX)) in the hippocampal dentate gyrus (DG). Chronic treatment with probucol reduced the occurrence of depressive-like behaviors in early- and mild-symptomatic YAC128 mice. Functional improvements were not accompanied by increased progenitor cell proliferation and neuronal differentiation. Our findings provide evidence that administration of probucol may be of clinical benefit in the management of early- to mild-symptomatic HD.


1998 ◽  
Vol 3 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Sirajedin S. Natah ◽  
Jarkko Hietanen ◽  
Ritva Häyrinen-Immonen ◽  
Peter Jungell ◽  
Maria Malmström ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document