Enhanced developmental potential of heat-shocked porcine parthenogenetic embryos is related to accelerated mitogen-activated protein kinase dephosphorylation

2009 ◽  
Vol 21 (7) ◽  
pp. 892 ◽  
Author(s):  
S. Clay Isom ◽  
Randall S. Prather ◽  
Edmund B. Rucker III

Recently, we demonstrated that a 9-h heat shock of 42°C can have marked stimulatory effects on porcine parthenogenetic embryo development if applied immediately after oocyte activation. Developmental discrepancies between heat-shocked (HS) and non-HS embryos were manifest as early as 3 h after activation, suggesting involvement of maturation promoting factor (MPF) and/or mitogen-activated protein kinase (MAPK). Analysis of cdc2 kinase activity showed that MPF inactivation occurred at similar rates in HS and control embryos upon oocyte activation. However, MAPK dephosphorylation was accelerated in HS embryos compared with controls. Okadaic acid, a protein phosphatase inhibitor, maintained MAPK activity at high levels in both non-HS and HS embryos and sensitised HS embryos to the effects of elevated temperatures. No increase in heat shock proteins was observed in pronuclear-stage HS embryos. These data suggest that the acceleration of development observed in HS porcine parthenogenetic embryos is associated with a precocious inactivation of the MAPK signalling cascade. The faster cleavage divisions observed in HS embryos may be linked physiologically to their enhanced developmental potential in vitro.

1998 ◽  
Vol 332 (3) ◽  
pp. 703-712 ◽  
Author(s):  
Evelyn T. MAIZELS ◽  
Carl A. PETERS ◽  
Michael KLINE ◽  
Richard E. CUTLER ◽  
Malathy SHANMUGAM ◽  
...  

Small heat-shock proteins (sHSPs) are widely expressed 25–28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-δ. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-δ is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-δ using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-δ effectively catalysed the phosphorylation of sHSP in vitro, and PKC-α was 30–50% as effective as an HSP-kinase; other PKCs tested (β1, β2, ε and ζ) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the observation of enhanced luteal HSP-27 phosphorylation in vivo, in late pregnancy, when PKC-δ is abundant and active, suggests that select PKC family members contribute to sHSP phosphorylation events in vivo.


2014 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
M. del Collado ◽  
M. R. de Lima ◽  
R. Vantini ◽  
...  

Chemical enucleation using microtubule-depolymerizing drugs is an attractive procedure to simplify the enucleation process in nuclear transfer. The aim of this study was to optimize chemically assisted (CA) and chemically induced (CI) enucleation protocols using metaphase II (MII) and pre-activated bovine oocytes, respectively, and to evaluate the activity of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in cytoplasts generated by these techniques. Initially, we determined the shortest effective treatment of MII and activated oocytes with 0.05 μg mL–1 demecolcine. Bovine oocytes in vitro matured (IVM) for 19 h (MII) or activated artificially with 5 μM ionomycin (5 min) and 10 μg mL–1 cycloheximide (5 h) after 26 h IVM were treated with demecolcine and samples were collected at 0, 0.25, 0.5, 1.0, 1.5, and 2.0 h of treatment. Oocytes were then stained with 10 μg mL–1 Hoechst 33342 and the protrusion or enucleation rates were determined. Next, we evaluated histone H1 and myelin basic protein (MBP) kinases, reflecting MPF and MAPK activities, respectively, in oocytes obtained from these treatments, and for that we used the method described by Kubelka et al. (2000 Biol. Reprod. 62, 292–302). Protrusion and enucleation rates were evaluated by the chi-squared (χ2) test, and MPF and MAPK activities were submitted to ANOVA and Tukey's test at 5% significance. For MII oocytes, effects of demecolcine were observed as early as 15 min, with a significant difference (P < 0.05) between control (12/112, 10.7%) and treated (33/114, 28.9%) groups in relation to protrusion rates. The largest number of protrusions was observed after 1.0 h of treatment (control: 15/113, 13.3%a; treated: 45/111, 40.5%b). In pre-activated oocytes, effects of demecolcine were also observed after 15 min, and in both techniques there were no significant differences between groups treated with demecolcine for 1.0, 1.5, or 2.0 h (CA: 40.5 to 52.5% of protrusion; CI: 35.2 to 46.7% of enucleation). In contrast to previous reports in which high concentrations of demecolcine for CA enucleation increased MPF activity, we observed no alterations in the activity of this factor at a demecolcine concentration of 0.05 μg mL–1. Activity of MAPK also did not differ significantly between the control and treated groups throughout evaluation. In the CI technique, a significant difference in MPF activity was observed after 0.5 h (70.3%) and 2.0 h of activation (39.1%), considering that the activity was 100% at the beginning of the evaluation. However, we observed no significant difference between the control and treated groups at any of the time points studied, as verified for MAPK activity. The exact effect of MPF on the nucleus in mammals is not well established. We believe that the use of low concentrations of demecolcine for short periods is less damaging to embryonic development and, until we have a better understanding of the effect of these kinases on the transferred nucleus, we recommend its use for chemical enucleation protocols in bovine. Financial support: FAPESP 2010/20744-6 and 2011/12983-3.


Zygote ◽  
2001 ◽  
Vol 9 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Hideki Tatemoto ◽  
Norio Muto

The decrease in maturation-promoting factor (MPF) activity precedes that in mitogen-activated protein kinase (MAPK) activity after egg activation, but the cellular functions of this delayed inactivation of MAPK are still unclear. The present study was conducted to examine the essential role of MAPK activity for supporting the transition from metaphase to interphase in porcine oocytes matured in vitro. The increases in the phosphorylated forms of MAPK and the activities of MAPK and histone H1 kinase (H1K) were shown in oocytes arrested at the metaphase II (MII) stage. After additional incubation of MII-arrested oocytes in medium with added U0126, a specific inhibitor of MAPK kinase, 24% of oocytes completed the second meiotic division and underwent entry into interphase with pronucleus (PN) formation, but not second polar body (PB-2) emission. The intensities of the phosphorylated forms of MAPK and the activities of MAPK and H1K in matured oocytes treated with U0126 were significantly decreased by the treatment with U0126. Electrostimulation to induce artificial activation caused both H1K and MAPK inactivation; the inactivation of H1K preceded the inactivation of MAPK and sustained high levels of MAPK activity were detected during the period of PB-2 emission. However, the time sequence required for MAPK inactivation was significantly reduced by the addition of U0126 to the culture medium following electrostimulation, resulting in the dramatic inactivation of MAPK distinct from that of H1K. In these oocytes, PB-2 emission was markedly inhibited but little difference was found in the time course of PN formation compared with oocytes not treated with U0126. These findings suggest that the decrease in MAPK activity is partly involved in driving matured oocytes out of metaphase to induce PN development, and that the delayed MAPK inactivation after the onset of MPF inactivation in activated oocytes has a crucial role for PB-2 emission to accomplish the transition from meiosis to mitosis.


2001 ◽  
Vol 281 (2) ◽  
pp. C603-C614 ◽  
Author(s):  
Ke-Ping Xu ◽  
Driss Zoukhri ◽  
James D. Zieske ◽  
Darlene A. Dartt ◽  
Christian Sergheraert ◽  
...  

We previously reported an increased secretion of amyloid precursor-like protein 2 (APLP2) in the healing corneal epithelium. The present study sought to investigate signal transduction pathways involved in APLP2 shedding in vitro. APLP2 was constitutively shed and released into culture medium in SV40-immortalized human corneal epithelial cells as assessed by Western blotting, flow cytometry, and indirect immunofluorescence. Activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) caused significant increases in APLP2 shedding. This was inhibited by staurosporine and a PKC-ε-specific, N-myristoylated peptide inhibitor. Epidermal growth factor (EGF) also induced APLP2 accumulation in culture medium. Basal APLP2 shedding as well as that induced by PMA and EGF was blocked by a mitogen-activated protein kinase (MAPK) kinase inhibitor, U-0126. Our results suggest that MAPK activity accounts for basal as well as PKC- and EGF-induced APLP2 shedding. In addition, PKC-ε may be involved in the induction of APLP2 shedding in corneal epithelial cells.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


Sign in / Sign up

Export Citation Format

Share Document