Astaxanthin counteracts the effects of heat shock on the maturation of bovine oocytes

2018 ◽  
Vol 30 (9) ◽  
pp. 1169 ◽  
Author(s):  
J. Ispada ◽  
T. A. Rodrigues ◽  
P. H. B. Risolia ◽  
R. S. Lima ◽  
D. R. Gonçalves ◽  
...  

The cellular mechanisms induced by elevated temperature on oocytes are not fully understood. However, there is evidence that some of the deleterious effects of heat shock are mediated by a heat-induced increase in reactive oxygen species (ROS). In this context, carotenoid antioxidants might have a thermoprotective effect. Therefore, the objective of this study was to determine the role of astaxanthin (AST) on oocyte ROS production and on the redox profile and developmental competency of cumulus-oocyte complexes (COCs) after 14 h heat shock (41°C) during in vitro maturation (IVM). Exposure of oocytes to heat shock during IVM increased ROS and reduced the ability of the oocyte to cleave and develop to the blastocyst stage. However, 12.5 and 25 nM astaxanthin rescued these negative effects of heat shock; astaxanthin counteracted the heat shock-induced increase in ROS and restored oocyte developmental competency. There was no effect of astaxanthin on maturation medium lipid peroxidation or on glutathione peroxidase and catalase activity in oocytes and cumulus cells. However, astaxanthin stimulated superoxide dismutase (SOD) activity in heat-shocked cumulus cells. In conclusion, direct heat shock reduced oocyte competence, which was restored by astaxanthin, possibly through regulation of ROS and SOD activity in oocytes and COCs.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Dorota Boruszewska ◽  
Ana Catarina Torres ◽  
Ilona Kowalczyk-Zieba ◽  
Patricia Diniz ◽  
Mariana Batista ◽  
...  

In the present study we examined whether LPA can be synthesized and act duringin vitromaturation of bovine cumulus oocyte complexes (COCs). We found transcription of genes coding for enzymes of LPA synthesis pathway (ATXandPLA2) and of LPA receptors (LPAR 1–4) in bovine oocytes and cumulus cells, followingin vitromaturation. COCs were maturedin vitroin presence or absence of LPA (10−5 M) for 24 h. Supplementation of maturation medium with LPA increased mRNA abundance ofFSTandGDF9in oocytes and decreased mRNA abundance ofCTSsin cumulus cells. Additionally, oocytes stimulated with LPA had higher transcription levels ofBCL2and lower transcription levels ofBAXresulting in the significantly lowerBAX/BCL2ratio. Blastocyst rates on day 7 were similar in the control and the LPA-stimulated COCs. Our study demonstrates for the first time that bovine COCs are a potential source and target of LPA action. We postulate that LPA exerts an autocrine and/or paracrine signaling, through several LPARs, between the oocyte and cumulus cells. LPA supplementation of maturation medium improves COC quality, and although this was not translated into an enhancedin vitrodevelopment until the blastocyst stage, improved oocyte competence may be relevant for subsequentin vivosurvival.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1794
Author(s):  
Konstantina Stamperna ◽  
Themistoklis Giannoulis ◽  
Eleni Dovolou ◽  
Maria Kalemkeridou ◽  
Ioannis Nanas ◽  
...  

Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.


2004 ◽  
Vol 16 (2) ◽  
pp. 282 ◽  
Author(s):  
Z. Roth ◽  
P.J. Hansen

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that can block the sphingomyelin cell-death pathway by suppressing ceramide-induced apoptosis. The present study was performed to test whether S1P protects oocytes from heat shock during in vitro maturation. Cumulus-oocyte complexes obtained by slicing follicles were placed in maturation medium with or without 50nM S1P and cultured at 38.5°C (CON) or 41°C (41C) for the first 12h of maturation. Incubation during the last 10h of maturation (22-h total maturation time), fertilization, and embryonic development were performed at 38.5°C and 5% (v/v) CO2. Blastocyst development was recorded at 8 days post-insemination (dpi) and activity of group II caspases in 8-day blastocysts was determined using a fluoroprobe, PhiPhiLux-G1D2 (OncoImmunin, Gaithersburg, MD, USA). Data were analysed by least-squares ANOVA with the GLM procedure of SAS. Percentage data were subjected to arcsin transformation before analysis. Exposure of oocytes to thermal stress during the first 12h of maturation reduced cleavage rate (P<0.01) and the number of oocytes developing to the blastocyst stage (P<0.04). There was a temperature x S1P interaction for cleavage rate (P<0.03) because S1P blocked effects of thermal stress on cleavage rate. Without S1P, the percentage of oocytes that cleaved by 3 dpi were 83.6±2.7% and 65.8±2.7% for CON and 41C, respectively. In the presence of S1P, percent cleavage was 86.7±2.7% and 83.9±2.7% for CON and 41C, respectively. There was a trend (P=0.06) for a temperature x S1P interaction for percent oocytes developing to blastocyst stage because S1P blocked effects of heat shock on development. Without S1P, the percentages of oocytes that developed to the blastocyst stage were 28.7±3.0% and 15.2±3.0% for CON and 41C, respectively. In the presence of S1P, percent blastocysts were 24.3±3.4% and 23.9±3.0% for CON and 41C, respectively. When development was expressed as percentage of cleaved embryos, however, there were no effects of temperature, S1P, or temperature x S1P on percent development to the blastocyst stage. Blastocyst caspase activity was not affected by temperature or S1P. In summary, exposure to physiologically relevant thermal stress during the first 12h of maturation has a deleterious effect on oocyte competence and this effect can be reduced by S1P. The fact that heat shock reduced the percentage of oocytes but not the percentage of cleaved embryos that became blastocysts suggests that oocytes that survive effects of heat shock and cleave have normal potential to develop to the blastocyst stage. Moreover, since heat shock did not affect caspase activity, it is likely that blastocysts from heat-shocked oocytes have normal developmental potential, at least as determined by caspase activity. Support: BARD FI-330-2002 and USDA Grants 2002-35203-12664 and 2001-52101-11318.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P<0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P<0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2006 ◽  
Vol 18 (2) ◽  
pp. 275
Author(s):  
H. S. Lee ◽  
Y. I. Seo ◽  
X. J. Yin ◽  
S. G. Cho ◽  
I. H. Bae ◽  
...  

In spite of our increased knowledge of in vitro oocyte maturation techniques, the success rate of obtaining mature canine oocytes in vitro remains very low compared with that for other domestic animals. The inefficient rate of meiotic resumption of canine oocytes is probably due to both the unique reproductive cycle and inappropriate in vitro maturation (IVM) medium. In an unpublished experiment, we found that the concentration of insulin was higher in estrus bitch serum (EBS; 8833 pg/mL) than in dog follicular fluid (DFF; preovulatory follicle, 122 pg/mL), which implies its possible role in the acquisition of oocyte competence. Therefore, in the present study we investigated the effects of supplementing the IVM medium with insulin on the incidence of maturation to metaphase II. Ovaries were collected from various stages of the estrous cycle by ovariohysterectomy, and oocytes with two or more intact cumulus layers and with a diameter >110 �m were selected and used for IVM. Oocytes were cultured in modified synthetic oviduct fluid (2004 Reprod. Nutr. Dev. 44, 105-109) supplemented with 10% EBS, 20 �g/mL estradiol, and different concentrations of insulin (0, 10, 100, or 1000 ng/mL) at 38.5�C, 5% CO2 in air. After 72 h, cumulus cells were removed from around oocytes using a small glass pipette. Denuded oocytes were fixed in 3.7% paraformaldehyde supplemented with 10 �g/mL Hoechst 33342 at room temperature for 40 min. Nuclear status was observed under UV light using a fluorescence microscope. The percentage of oocytes at the metaphase II stage was not different among the four groups 6.8, 1.8, 5.4, and 2.1% in the control, 10, 100, and 1000 ng/mL insulin groups, respectively. The incidence of oocytes with pronuclear-like structures or cleaving beyond the two-cell stage was not significant higher in the 10 and 100 ng/mL insulin treatment groups than in the control and 1000 ng/mL insulin groups 20.0 and 19.6% vs. 6.8 and 6.4%, respectively. These results indicate that the addition of insulin to the in vitro maturation medium of dog oocytes had no effect on the incidence of meiotic maturation to metaphase II, nor did it affect the frequency of occurrence of spontaneous oocyte activation.


2014 ◽  
Vol 26 (1) ◽  
pp. 196
Author(s):  
K. R. L. Schwarz ◽  
R. C. Botigelli ◽  
F. C. Castro ◽  
M. R. Chiaratti ◽  
C. L. V. Leal

The sensitivity of IVP embryos to cryopreservation is often associated with lipid accumulation in the cytoplasm induced by the presence of fetal calf serum (FCS) during culture. Intracellular levels of cyclic (c)AMP and cGMP are involved in the regulation of lipolysis in adipocytes; high levels stimulate lipolysis whereas low levels lead to lipogenesis. Both nucleotides are present in bovine oocytes, together with the enzymes for their synthesis and degradation. The aim of this study was to analysis the effect of FCS on the cGMP pathway and the influence of cGMP on cytoplasmic lipids in bovine oocytes. In experiments 1 and 2, cumulus–oocyte complexes (COC) were cultured for 24 h in maturation medium with different proportions of FCS (2 and 10%) and a control group was matured with 0.4% BSA. After this period, transcripts for cGMP pathway were assessed by real-time PCR (GUCY1B3 and PDE5, cGMP synthesis and degradation enzymes, respectively; experiment 1) in oocytes and cumulus cells, and cGMP levels were measured in COC using commercial enzyme immunoassay kits (EIA; experiment 2). In experiments 3 and 4, COC were matured for 24 h with 0.4% BSA and different concentrations of the phosphodiesterase (PDE)5 inhibitor (0, 10–7, and 10–5 M sildenafil) to inhibit cGMP degradation and a control group was matured with 0.4% BSA. The nucleotide levels were measured in COC (experiment 3) and the oocytes were stained with Nile Red (1 μg mL–1) for evaluation of lipid content (experiment 4). Statistical analyses were performed by ANOVA followed by Tukey post hoc test using SAS software (SAS Institute Inc., Cary, NC, USA). Data for gene expression from 5 replicates and for cGMP measurements and lipid content from 3 replicates were log10-transformed into before analyses. The level of significance was 5%. The presence of FCS reduced GUCY1B3 expression in both cells and increased PDE5A in cumulus cells (P < 0.05). In experiment 2, the groups treated with 2 (0.64 fmol/COC) and 10% FCS (1.04 fmol/COC) showed decreased cGMP levels compared with control (9.46 fmol/COC; P < 0.05). In experiment 3, inhibition of PDE5A increased cGMP levels in the treated groups (36 and 56 fmol/COC for 10–7 and 10–5 M sildenafil, respectively) compared with control (9.5 fmol/COC; P < 0.05). Therefore, sildenafil showed inverse effects compared with FCS (experiment 2). In experiment 4, oocytes treated with 10–7 and 10–5 M sildenafil showed a reduced lipid content compared with controls (11.6 ± 9.4 v. 13.9 μm2 fluorescence intensity, respectively; P < 0.05). The results suggest that FCS in maturation medium affects the cGMP pathway, interfering with the transcription of genes that control its levels, which in turn results in nucleotide reduction. Inhibition of PDE5 increases cGMP levels and reduces the lipid content of oocytes, indicating that changes in this pathway caused by FCS may affect lipid metabolism of oocytes. More studies are underway to better understand this mechanism. The authors acknowledge FAPESP 2012/00170-0 for financial support.


2004 ◽  
Vol 16 (2) ◽  
pp. 204 ◽  
Author(s):  
J. Ye ◽  
K.H.S. Campbell ◽  
M.R. Luck

It is suggested that the relatively high rates of polyspermic fertilization and poor development of pig embryos produced in vitro are caused by asynchronous oocyte maturation. We have recently shown that pre-treatment of pig oocytes with cycloheximide (CHX) is an efficient way of synchronizing their meiotic maturation in vitro. However, it is not known whether this procedure affects fertilization or further development. The present study examined the effects of CHX-synchronised meiotic maturation on subsequent embryo development and the response to FSH. Pig ovaries were collected from a local abattoir. Cumulus-oocyte complexes (COCs) were aspirated from 3–5mm diameter follicles with a translucent appearance and extensive vascularization. COCs were first pre-incubated in defined maturation medium (DM; M199 with Earle’s salts, 25mM HEPES and sodium bicarbonate, 3mM L-glutamine, 0.1% (w/v) BSA, 0.57mM cysteine, 10ngmL−1 EGF, 0.2μgmL−1 pLH, 100μmL−1 penicillin and 0.1mgmL−1 streptomycin) or in DM supplemented with 50ngmL−1 pFSH (DMF) and 5μgmL−1 CHX for 12h. COCs were then further cultured in the same DM without CHX for 24–30h or in DMF for 36h. For controls, COCs were cultured conventionally in DM for 42h or DMF for 48h. After removal of cumulus cells, all cultured oocytes were inseminated with ejaculated sperm at a final concentration of 300000mL−1 for 6h. The IVF medium was modified Tris-buffered medium containing 0.1% BSA, 20μM adenosine and 0.2mM reduced glutathione. Putative embryos were cultured in NCSU23 without glucose but supplemented with 4.5mM Na lactate and 0.33 mM Na pyruvate for 2 days. Cleaved embryos were further cultured in normal NCSU23 for 4 days. IVM and IVF were performed in 5% CO2 in air and IVC in 5% CO2, 5% O2, 90% N2, all at 39°C and 95% RH. Three replicates with DM, with or without CHX, and one with DMF, with or without CHX, were performed with 30–50 oocytes in each replicate. Statistical comparisons were by t-test. The result with DM showed that the rate for normal cleavage at 2 days after insemination of CHX-treated oocytes (40.6±3.8%) was similar to that of controls (40.4±3.5%). However, the proportion developing to healthy blastocysts at Day 6 was significantly higher in the CHX-treated group (16.9±1.2%) than in controls (9.6±1.3%; P&lt;0.05). A significantly higher number of Day 2-cleaved embryos from CHX-treated oocytes developed to the day 6 blastocyst stage compared with controls (44.7±5.0% and 22.3±2.4%, respectively; P&lt;0.05). Supplementation of the basic maturation medium with pFSH increased the rate of cleavage in both CHX-treated oocytes (73.2%) and controls (76.9%) and increased the proportions developing to healthy blastocysts at Day 6 (CHX-treated: 39.0%; control: 11.5%). We conclude that oocytes pre-treated with CHX retain their developmental competence and that meiotic synchronization with CHX improves the efficiency of in vitro production of pig embryos. (Supported by BBSRC 42/S18810.)


2017 ◽  
Vol 29 (1) ◽  
pp. 199
Author(s):  
A. W. Harl ◽  
E. L. Larimore ◽  
A. Al Naib ◽  
L. K. Wooldridge ◽  
A. D. Ealy ◽  
...  

The objective of this work was to determine how characteristics of bovine follicle fluid (FF; especially oestradiol content) affect cumulus cell expansion and oocyte competence. In the first study, FF was collected from abattoir-derived ovaries and pooled separately for large follicles (≥10 mm) and small follicles (≤3 mm). A portion of the FF from each category was charcoal stripped. These 4 types of FF were then used as the primary ingredient (75% vol/vol) in oocyte maturation media. A separate control group lacking FF but containing BSA was included to monitor potential impacts of protein on outcomes (control; without FF). Some of the cumulus-oocyte complexes (COC; n = 250) were matured in individual drops for analysis of cumulus expansion (photographed and measured at 0 and 21 h of maturation). Other COC (n = 770) were matured in groups of 12 to 25 in the previously described media, and then subjected to IVF procedures. Cleavage rates were recorded on Day 3, and blastocyst rates were recorded on Day 8 post-fertilization. Cumulus cell expansion was greatest when COC were matured in medium containing FF from large follicles, wherein it even exceeded the controls (P < 0.02). Maturation in FF from small follicles resulted in cumulus expansion that was intermediate between large and control. Maturation in charcoal-stripped FF severely restricted cumulus cell expansion (P < 0.05) compared with those matured in untreated FF. Despite the observed improvement in cumulus cell expansion, COC that had been matured in media containing FF were less likely to cleave (P < 0.05) and also less likely to develop to the blastocyst stage (P < 0.01) than those matured in control medium. Cleavage and blastocyst rates did not differ among any of the maturation media containing FF. In the second study, oestrous cycles of 9 crossbred cows were synchronized and FF samples were collected 36 to 42 h after prostaglandin F2α injection. Samples from individual cows were categorized as having high oestradiol (>800,000 pg mL−1; H) or low oestradiol concentrations (<800,000 pg mL−1; L). The FF was retained for use in in vitro experiments, where it was added to maturation media (20% vol/vol). Cumulus-oocyte complexes (n = 1,775) were randomly distributed into treatments across 12 in vitro maturation/fertilization replicates (H and L, balanced within replicate; 4 replicates/cow). Each replicate included the following 3 control groups: maturation medium containing BSA without FF, maturation medium without BSA with abattoir-derived FF, and maturation medium without BSA and without FF. The COC were matured in their assigned medium for 21 h, and then all COC were subjected to IVF procedures. Cleavage rates were recorded on Day 3, and blastocyst rates were recorded on Day 7 and 8 post-fertilization. Oestradiol content of the FF (H v. L) did not affect oocyte cleavage nor blastocyst rates on Day 7 or 8. The results of these studies indicate that although FF improves cumulus cell expansion during maturation in vitro, it does not result in higher rates of cleavage or blastocyst development regardless of oestradiol content.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 838
Author(s):  
Paulina Lipinska ◽  
Ewa Sell-Kubiak ◽  
Piotr Pawlak ◽  
Zofia Eliza Madeja ◽  
Ewelina Warzych

Glucose or fatty acids (FAs) metabolisms may alter the ovarian follicle environment and thus determine oocyte and the nascent embryo quality. The aim of the experiment was to investigate the effect of selective inhibition of glucose (iodoacetate + DHEA) or FA (etomoxir) metabolism on in vitro maturation (IVM) of bovine COCs (cumulus–oocyte complexes) to investigate oocyte’s development, quality, and energy metabolism. After in vitro fertilization, embryos were cultured to the blastocyst stage. Lipid droplets, metabolome, and lipidome were analyzed in oocytes and cumulus cells. mRNA expression of the selected genes was measured in the cumulus cells. ATP and glutathione relative levels were measured in oocytes. Changes in FA content in the maturation medium were evaluated by mass spectrometry. Our results indicate that only glucose metabolism is substantial to the oocyte during IVM since only glucose inhibition decreased embryo culture efficiency. The most noteworthy differences in the reaction to the applied inhibition systems were observed in cumulus cells. The upregulation of ketone body metabolism in the cumulus cells of the glucose inhibition group suggest possibly failed attempts of cells to switch into lipid consumption. On the contrary, etomoxir treatment of the oocytes did not affect embryo development, probably due to undisturbed metabolism in cumulus cells. Therefore, we suggest that the energy pathways analyzed in this experiment are not interchangeable alternatives in bovine COCs.


Zygote ◽  
2011 ◽  
Vol 20 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Hisashi Nabenishi ◽  
Hiroshi Ohta ◽  
Toshihumi Nishimoto ◽  
Tetsuo Morita ◽  
Koji Ashizawa ◽  
...  

SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.


Sign in / Sign up

Export Citation Format

Share Document