Quantitative proteomics suggest a potential link between early embryonic death and trisomy 16

2019 ◽  
Vol 31 (6) ◽  
pp. 1116
Author(s):  
Ting Yao ◽  
Haiyan Hou ◽  
Guozhong Liu ◽  
Jun Wu ◽  
Zhe Qin ◽  
...  

Activation of extracellular signal-regulated kinase (ERK) signalling, alteration of the uterine microenvironment and a reduction in human chorionic gonadotrophin production have been linked with fetal trisomy 16-induced early embryonic death (EED). However, the detailed biological mechanism of EED remains unclear. Using quantitative proteomics we successfully screened differentially expressed proteins in the villous tissues from patients with EED and fetal trisomy 16 (EEDT16), patients with EED but normal fetal chromosomes (EEDNC) and patients undergoing elective abortion with normal fetal chromosomes (EANC) as the reference group. Compared with the reference group, we identified 337 and 220 differentially expressed proteins in EEDT16 patients and EEDNC patients respectively; these were involved in critical biological processes including immune response, superoxide metabolism, inflammatory responses and so on. We found that differential expression of immunological function-related molecules, such as human leukocyte antigen-g (HLA-G), HLA-C, Fc Fragment Of IgG Receptor III (FcγR III), also named CD16, interleukin 18 (IL-18) and transforming growth factor β1 (TGF-β1), might induce EED in both EEDT16 and EEDNC patients. More severe immunological dysfunction was observed in EEDT16 patients than that in EEDNC patients. Furthermore, differential expression of implantation and invasion-related molecules, such as cytochrome b-245 light chain (CYBA), neutrophil cytosol factor 2 (NCF2), Mitogen-activated protein kinase kinase kinase 4 (MAP3K4), matrix metalloproteinase 2 (MMP2), MMP9 and tumour necrosis factor α (TNF-α) might induce EED in both EEDT16 and EEDNC patients, although more severe dysfunction in the implantation and invasion ability of villous tissues was observed in EEDT16 patients.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1902-1902
Author(s):  
Dominik Dytfeld ◽  
Malathi Kandarpa ◽  
John R Strahler ◽  
Dattatreya Mellacheruvu ◽  
Suchitra Subramani ◽  
...  

Abstract Abstract 1902 Introduction: Multiple myeloma (MM) remains mostly incurable. Novel therapies have improved response rates, which are now reaching 100%. More importantly, number of recent studies showed that the depth of response, e.g. achievement of at least 90% reduction of the disease (≥VGPR) is associated with longer disease control. Therefore, improving VGPR rates and establishing predictors of VGPR to a given regimen may be an important clinical goal. High throughput quantitative proteomics may offer greater insight into the actual biology of the malignant cell than genome analysis and therefore, may be more useful in the development of personalized therapy. The objective of this study is to establish a proteomic signature predicting achievement of at least VGPR to initial treatment with bortezomib (Velcade®), pegylated liposomal doxorubicin, and dexamethasone (VDD). We previously reported preliminary proteomic profile of malignant plasma cells (PCs) obtained from a set of naïve MM pts enrolled in the VDD trial (Dytfeld et al., ASH 2009). Here we present the results of differential proteomic analysis of MM PCs of all available samples from the frontline VDD study (≥VGPR vs. <VGPR) using two independent and complementary quantitative proteomic platforms. We also compared the proteomic profile with gene expression data. Preliminary validation of the biomarkers of response prediction is presented. Methods: PCs were acquired from pre-treatment bone marrow specimens after obtaining informed consent from patients (pts), and were thereafter enriched with a RosetteSep® negative selection kit. Quantitative proteomic analysis of PCs from 17 naïve pts with MM from the VDD study was performed using iTRAQ approach in 8-plex variant. To increase confidence of analysis, label-free quantitative proteomics (LF) based on spectra counting was conducted on PCs from 12 pts. In iTRAQ experiments, proteins were processed with reagents according to the manufacturer's protocol followed by SCX fractionation and LC-MS/MS analysis (4800 Plus MALDI TOF/TOF). Peptides from the MM1S cell line were used as a reference. The data were analyzed using ProteinPilot™. For LF analysis, proteins were fractionated before trypsin digestion on Bis-Tris-Gel and subsequently run on LC-ESI-MS/MS on a linear trap mass spectrometer (LTQ Orbitrap). A database search was carried out using X!Tandem followed by Trans-proteomic Pipeline. At least 1.5-fold difference in expression in both platforms was used as a cut-off value. To correlate proteomics with gene expression of dysregulated proteins of interest, mRNA levels were analyzed by quantitative real time PCR (RT-PCR). Validation of proteomic findings on proteins of interest was performed using Western Blot. Results: We identified a total of 894 proteins in 3 iTRAQ experiments with high confidence (FDR<1%) and 1058 proteins by LF approach. Based on iTRAQ analysis, 20 proteins were found up-regulated in samples from pts with ≥VGPR (8 out of 17 pts) while 14 were down- regulated. Using LF approach, 284 proteins were elevated in the ≥VGPR group (6 out of 12 pts) while 315 proteins were down-regulated. Both iTRAQ and LF methods showed 15 differentially expressed proteins in common and 14 of them showed identical up or down trends. Interestingly, among differentially expressed proteins, there were proteins involved in proteasome activation (PSME1 and TXNL1), protection against oxidative stress (TXN and TXNDC5), glucose and cholesterol metabolism (TP1, APOA1 and ACAT1) and apoptosis (MX1). RT-PCR performed on a subset of genes confirmed the trend in differential expression between pts with ≥VGPR and <VGPR for TXNDC5 and PSME1. No change in mRNA expression levels was observed in TXN, APOA1, TPI1 and MX1while the trend in expression was reversed for ACAT1. Western blot analysis performed to date validated differential expression of PSME1. Conclusions: We present patient-derived proteomic characteristics of MM cells using two independent proteomic platforms. As a proof of concept, analysis of PCs obtained from pts enrolled in the frontline VDD study shows differential expression of 34 proteins in pts who achieved ≥VGPR vs. pts with <VGPR. Correlation with gene expression and further validation and functional analysis are in progress. This study was supported by a grant from the Multiple Myeloma Research Foundation. Disclosures: Jakubowiak: Millennium, Celgene, Bristol-Myers Squibb, Johnson & Johnson Ortho-Centocor: Honoraria; Millennium, Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Millennium, Celgene, Centocor-Ortho Biotech: Speakers Bureau.


2020 ◽  
Author(s):  
Peixi Liu ◽  
Yuan Shi ◽  
Sichen Li ◽  
Yingjun Liu ◽  
Yingjie Zhou ◽  
...  

Abstract Background: Spinal dural arteriovenous fistula (SDAVF) is the most common spinal vascular shunt lesion. Although pathological changes in the SDAVF draining vein (SDAVF-DV) have been elucidated, protein changes remain enigmatic. We investigated protein changes in the SDAVF-DV.Methods: Three SDAVF-DV samples were collected, and superficial temporal artery (STA) and superficial temporal vein (STV) samples were used as controls. After quantification and enzymolysis of the proteins, label-free quantitative proteomics was performed, and the peptide mixture was fractionated and analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify the differentially expressed proteins. Bioinformatics analysis of the differentially expressed proteins was also performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses.Results: Compared with the STA, the SDAVF-DV had 195 upregulated proteins and 303 downregulated proteins. GO analysis showed that the most differential GO terms in each category were the adenylate cyclase-modulating G protein-coupled receptor signalling pathway, U6 snRNP and SH3 domain binding. KEGG pathway analysis showed that the most differentially expressed protein pathway was focal adhesion. Compared with the STV, the SDAVF-DV had 158 upregulated proteins and 362 downregulated proteins. GO analysis showed that the most differential GO terms in each category were lamellipodium assembly, U6 snRNP, and SH3 domain binding. KEGG pathway analysis showed that the most differentially expressed protein pathway was dilated cardiomyopathy. The PPI analysis revealed PPIs among the top 300 proteins.Conclusions: We demonstrated that the SDAVF-DV showed specific protein expression changes under long-period venous hypertension. The results of the present study will provide insights into the pathogenesis of SDAVF formation at the protein level. The proteomic results provide a scientific foundation for further study to explore the pathophysiological mechanism of SDAVF.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2031-2031
Author(s):  
Naoto Takahashi ◽  
Matthew Brainbridge ◽  
Stuart A. Scott ◽  
Ryo Ichinohasama ◽  
Stephen E. Sanche ◽  
...  

Abstract RIZ1 (PRDM2) is a member of the nuclear protein methyltransferase superfamily involved in chromatin remodeling. RIZ1 functions as a tumor suppressor gene in a number of human cancers and is down regulated in some human acute myeloid leukemias. We previously found RIZ-1 to be silenced in K562 erythroleukemia cells by promoter hypermethylation. Furthermore, expression of RIZ1 in K562 promotes erythroid differentiation and also potentiates TGF-β1 mediated differentiation. To investigate similarities between genes altered by RIZ1 expression and the TGF-β1 pathway, we used SELDI to compare the protein profiles of K562 against K562 + RIZ1 and K562 + TGF-β1. Protein extracts for SELDI profiling were separated into six fractions according to their isoelectric points. Proteins from each fraction were then bound to two different protein chip surfaces (H50-hydrophoboic and CM10-cation exhange) and their mass/charge determined using SELDI. We analyzed four replicates from each sample and classified proteins as differentially expressed if their P-values were below 0.05. In total, we observed 104 differentially expressed proteins (60 upregulated and 44 down regulated) between K562 and K562 + RIZ1 and 176 proteins (96 upregulated and 80 down regulated) between K562 and K562 + TGF-β1. We used 2D-PAGE to identify differentially expressed proteins identified by SELDI analysis and located 48 proteins that were over expressed in K562 + RIZ1 and K562 + TGF-β1 relative to K562. To establish whether these proteins were the same proteins observed using SELDI, we determined if the proteins had the same pI and molecular weight and if the gel-eluted proteins bound to the same protein chip surface with the same mass/charge. 15 of 48 proteins passed the above criteria and we determined their identities using Trypsin-based peptide mapping strategies with molecular weight and pI restrictions. We identified two candidate proteins (14-3-3ε and S100/A13) that are similarly over expressed in K562 + RIZ1 and K562 + TGF-β1. These proteins have been shown to be associated with TGF-β1 signaling. Schistosomal 14-3-3ε interacts with SmRK1, a divergent type I transforming growth factor β1 receptor (TR-I) present on the surface of adult parasites and also binds to and activates human TR-I. S100/A13 belongs to a family of low molecular weight proteins characterized by the presence of two calcium-binding EF-hand motifs that includes S100C/A11, a member recently shown to play a key role in a PKCα mediated pathway essential for the growth inhibition of normal human keratinocytes by TGF-β1. In summary, we demonstrate the potential for using SELDI to identify novel proteins involved in regulating and connecting cellular growth and differentiation pathways.


Oncotarget ◽  
2016 ◽  
Vol 7 (50) ◽  
pp. 83187-83199 ◽  
Author(s):  
Hong Qu ◽  
Yuling Chen ◽  
Guangming Cao ◽  
Chongdong Liu ◽  
Jiatong Xu ◽  
...  

2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding the transforming growth factor beta receptor 3, TGFBR3, when comparing primary tumors of the breast to the tissue of origin, the normal breast. TGFBR3 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of TGFBR3 in primary tumors of the breast was correlated with overall survival in patients with luminal A and luminal B cancers, demonstrating a relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. TGFBR3 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


Sign in / Sign up

Export Citation Format

Share Document