Analysis of the miRNA transcriptome during testicular development and spermatogenesis of the Mongolian horse

2020 ◽  
Vol 32 (6) ◽  
pp. 582
Author(s):  
Bei Li ◽  
Xiaolong He ◽  
Yiping Zhao ◽  
Dongyi Bai ◽  
Dandan Li ◽  
...  

Numerous studies have shown that microRNAs (miRNAs) are essential for testicular development and spermatogenesis. In order to further characterise these physiological processes, three immature and three mature testes of the Mongolian horse were collected and six libraries were established. Using small RNA sequencing technology, 531 mature miRNAs were identified, including 46 novel miRNAs without previously ascribed functions. Among the 531 miRNAs, 421 were expressed in both immature and mature libraries, 65 miRNAs were found solely in immature testis libraries and 45 miRNAs were found solely in mature testis libraries. Furthermore, among the miRNAs that were identified in both immature and mature libraries, 107 were significantly differentially expressed (corrected P value (padj)<0.05). Among the miRNAs that were only expressed in immature testes, two miRNAs were differentially expressed, whereas among the miRNAs that were only expressed in mature testes, nine miRNAs were differentially expressed. Comprehensive analysis of miRNA and mRNA expression profiles predicted 107 miRNA–mRNA interaction sites. Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the predicted target genes suggested roles of the differentially expressed miRNAs in testicular development and spermatogenesis. These findings identify miRNAs as key factors in the development of the testes and spermatogenesis in the Mongolian horse, which may also help us to understand the mechanisms of fertility in related mammalian species.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Houqing Zeng ◽  
Xin Zhang ◽  
Ming Ding ◽  
Yiyong Zhu

Abstract Background Zinc (Zn) deficiency is one of the most widespread soil constraints affecting rice productivity, but the molecular mechanisms underlying the regulation of Zn deficiency response is still limited. Here, we aim to understand the molecular mechanisms of Zn deficiency response by integrating the analyses of the global miRNA and mRNA expression profiles under Zn deficiency and resupply in rice seedlings by integrating Illumina’s high-throughput small RNA sequencing and transcriptome sequencing. Results The transcriptome sequencing identified 360 genes that were differentially expressed in the shoots and roots of Zn-deficient rice seedlings, and 97 of them were recovered after Zn resupply. A total of 68 miRNAs were identified to be differentially expressed under Zn deficiency and/or Zn resupply. The integrated analyses of miRNAome and transcriptome data showed that 12 differentially expressed genes are the potential target genes of 10 Zn-responsive miRNAs such as miR171g-5p, miR397b-5p, miR398a-5p and miR528-5p. Some miRNA genes and differentially expressed genes were selected for validation by quantitative RT-PCR, and their expressions were similar to that of the sequencing results. Conclusion These results provide insights into miRNA-mediated regulatory pathways in Zn deficiency response, and provide candidate genes for genetic improvement of Zn deficiency tolerance in rice.


2020 ◽  
Author(s):  
Li-rong Yan ◽  
Ang Wang ◽  
Qian Xu ◽  
Ben-gang Wang

Abstract Background: Recently, the incidence of cholangiocarcinoma (CCA) has gradually increased. As CCA has a poor prognosis, the ideal survival rate is scarce for patients. The abnormal expressed tsRNA may regulate the progression of a variety of tumors, and tsRNA is expected to become a new diagnostic marker of cancer. However, the expression of tsRNA is obscure and should be elucidated in CCA.Methods: We collected CCA tissues and adjacent normal tissues from three patients. High-throughput RNA-seq was utilized to determine the overall expression profiles of tsRNA in CCA and adjacent normal tissues and to screen the tsRNAs that were differentially expressed. The biological effects and potential signaling pathways of dysregulated tsRNAs between the CCA and adjacent normal tissues were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.Results: High-throughput RNA-seq totally demonstrated 535 dysregulated tsRNAs, of which 241 tsRNAs were upregulated and 294 tsRNAs were downregulated in CCA compared with adjacent normal tissues (|log2 (fold change)| >=1 and p value< 0.05). GO and KEGG enrichment analyses indicated that the target genes of dysregulated tRFs (tRF-34-JJ6RRNLIK898HR, tRF-38-0668K87SERM492V, tRF-39-0668K87SERM492E2) were mainly enriched in the Notch signaling pathway, Hippo signaling pathway, and cAMP signaling pathway and in growth hormone synthesis, secretion and action.Conclusion: Differentially expressed tRFs in CCA are enriched in many pathways associated with neoplasms, which may impact the progression of CCA.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S149-S149
Author(s):  
R Inčiūraitė ◽  
S Juzėnas ◽  
R Ramonaitė ◽  
J Skiecevičienė

Abstract Background Ulcerative colitis (UC) is a chronic relapsing large intestine condition of inflammatory origin1. One of the most common features of UC is the injury of the intestinal barrier, which is composed primarily of colonic epithelial cells (CEpCs)2. The aim of this study was to identify UC-induced miRNA markers in CEpCs by determining the miRNA expression profile changes in crypt-top and crypt-bottom CEpC populations during active (aUC) and inactive (iUC) UC. Methods Crypt-top and crypt-bottom CEpCs were sorted from biopsies of healthy control (HC) individuals (n=19), patients with aUC (n=17) and iUC (n=15) using FACS technology. Total RNA was extracted, small RNA sequencing libraries were prepared and sequenced using Illumina platform. Sequencing data was processed with nextflow-core/smrnaseq pipeline. Differential expression, correlation, miRNA-target interactions, gene set enrichment analyses and data visualisation were performed using Rstudio software packages DESeq2, isomiRs, multimiR, SingleCellExperiment, clusterProfiler, ReactomePA, etc. The miRNAs with an adjusted p-value &lt; 0.05, and absolute value of log2 fold change &gt; 1 were considered to be significantly differentially expressed. Results 432 unique miRNAs were identified in samples. Changes of expression profile during aUC were identified in crypt-bottom CEpCs (compared to: (i) HC - 23 miRNAs, (ii) iUC - 22 miRNAs), as well as in crypt-top CEpCs (compared to: (i) HC - 28 miRNAs, (ii) iUC - 9 miRNAs). Also, 7 miRNAs were differentially expressed in crypt-bottom CEpCs and 3 miRNAs in crypt-top CEpCs during iUC compared to HC. 5 miRNAs were identified to be differentially expressed during aUC, 2 miRNAs - during iUC, and 11 miRNAs in HC when comparing expression profiles of crypt-bottom and crypt-bottom CEpCs. We also identified 16 and 14 miRNAs which expression in crypt-bottom and crypt-top CEpCs moderately (0.5&lt;rho&lt;0.7) correlated with Mayo score, respectively. Finally, the gene sets of pathways revealed the involvement of several miRNAs in biological processes and molecular functions associated with UC pathogenesis. Conclusion The changes of expression profiles of miRNAs revealed that crypt-top and crypt-bottom CEpCs respond to inflammation differently, the expression of these miRNAs reflects disease activity and modulates the processes of UC pathogenesis. References


2019 ◽  
Vol 60 (7) ◽  
pp. 1604-1618
Author(s):  
Hongxia Li ◽  
Jinglei Guo ◽  
Chengyang Zhang ◽  
Weijun Zheng ◽  
Yulong Song ◽  
...  

Abstract K-type cytoplasmic male sterility (KCMS) lines were ideal material for three-line hybrid wheat system due to the major role in hybrid wheat production. In this study, the morphology of developing microspore and mature pollen was compared between a KCMS line and its near-isogenic restorer line (KCMS-NIL). The most striking difference is that the microspore was unable to develop into tricellular pollen in the KCMS line. MicroRNA plays vital roles in flowering and gametophyte development. Small RNA sequencing identified a total of 274 known and 401 novel miRNAs differentially expressed between two lines or two developmental stages. Most of miRNAs with high abundance were differentially expressed at the uninucleate stage, and their expression level recovered or remained at the binucleate stage. Further degradome sequencing identified target genes which were mainly enriched in transcription regulation, phytohormone signaling and RNA degradation pathways. Combining with the transcriptome data, a correlation was found between the abnormal anther development, such as postmeiotic mitosis cessation, deformative pollen wall and the chromosome condensation of the vegetative cell, and the alterations in the related miRNA and their targets expression profiles. According to the correlation and pathway analysis, we propose a hypothetic miRNA-mediated network for the control of KCMS restoration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Deqian Wang

Abstract Honey bees are important pollinators of wild plants and crops. MicroRNAs (miRNAs) are endogenous regulators of gene expression. In this study, we initially determined that the lethal concentration 50 (LC50) of dinotefuran was 0.773 mg/l. Then, the expression profiles and differentially expressed miRNAs (DE miRNAs) in honey bee brains after 1, 5, and 10 d of treatment with the lethal concentration 10 (LC10) of dinotefuran were explored via deep small-RNA sequencing and bioinformatics. In total, 2, 23, and 27 DE miRNAs were identified after persistent exposure to the LC10 of dinotefuran for 1, 5, and 10 d, respectively. Some abundant miRNAs, such as ame-miR-375-3p, ame-miR-281-5p, ame-miR-3786-3p, ame-miR-10-5p, and ame-miR-6037-3p, were extremely significantly differentially expressed. Enrichment analysis suggested that the candidate target genes of the DE miRNAs are involved in the regulation of biological processes, cellular processes, and behaviors. These results expand our understanding of the regulatory roles of miRNAs in honey bee Apis mellifera (Hymenopptera: Apidae) responses to neonicotinoid insecticides and facilitate further studies on the functions of miRNAs in honey bees.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Li ◽  
Tongbing Su ◽  
Deshuang Zhang ◽  
Weihong Wang ◽  
Xiaoyun Xin ◽  
...  

AbstractHeterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Yaodong Zhao ◽  
Wenjing Ma ◽  
Xiaohong Wei ◽  
Yu Long ◽  
Ying Zhao ◽  
...  

Alfalfa (Medicago sativa L.) is a high quality leguminous forage. Drought stress is one of the main factors that restrict the development of the alfalfa industry. High-throughput sequencing was used to analyze the microRNA (miRNA) profiles of alfalfa plants treated with CK (normal water), PEG (polyethylene glycol-6000; drought stress), and PEG + SNP (sodium nitroprusside; nitric oxide (NO) sprayed externally under drought stress). We identified 90 known miRNAs belonging to 46 families and predicted 177 new miRNAs. Real-time quantitative fluorescent PCR (qRT-PCR) was used to validate high-throughput expression analysis data. A total of 32 (14 known miRNAs and 18 new miRNAs) and 55 (24 known miRNAs and 31 new miRNAs) differentially expressed miRNAs were identified in PEG and PEG + SNP samples. This suggested that exogenous NO can induce more new miRNAs. The differentially expressed miRNA maturation sequences in the two treatment groups were targeted by 86 and 157 potential target genes, separately. The function of target genes was annotated by gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis. The expression profiles of nine selected miRNAs and their target genes verified that their expression patterns were opposite. This study has documented that analysis of miRNA under PEG and PEG + SNP conditions provides important insights into the improvement of drought resistance of alfalfa by exogenous NO at the molecular level. This has important scientific value and practical significance for the improvement of plant drought resistance by exogenous NO.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Kai Xing ◽  
Xitong Zhao ◽  
Yibing Liu ◽  
Fengxia Zhang ◽  
Zhen Tan ◽  
...  

Fatty traits are very important in pig production. However, the role of microRNAs (miRNAs) in fat deposition is not clearly understood. In this study, we compared adipose miRNAs from three full-sibling pairs of female Landrace pigs, with high and low backfat thickness, to investigate the associated regulatory network. We obtained an average of 17.29 million raw reads from six libraries, 62.27% of which mapped to the pig reference genome. A total of 318 pig miRNAs were detected among the samples. Among them, 18 miRNAs were differentially expressed (p-value < 0.05, |log2fold change| ≥ 1) between the high and low backfat groups; 6 were up-regulated and 12 were down-regulated. Functional enrichment of the predicted target genes of the differentially expressed miRNAs, indicated that these miRNAs were involved mainly in lipid and carbohydrate metabolism, and glycan biosynthesis and metabolism. Comprehensive analysis of the mRNA and miRNA transcriptomes revealed possible regulatory relationships for fat deposition. Negatively correlated mRNA–miRNA pairs included miR-137–PPARGC1A, miR-141–FASN, and miR-122-5p–PKM, indicating these interactions may be key regulators of fat deposition. Our findings provide important insights into miRNA expression patterns in the backfat tissue of pig and new insights into the regulatory mechanisms of fat deposition in pig.


Sign in / Sign up

Export Citation Format

Share Document