scholarly journals 295 COMPARISON OF TWO METHODS TO AVOID MOVEMENT OF BOVINE OOCYTES DURING IN VITRO MATURATION

2005 ◽  
Vol 17 (2) ◽  
pp. 298 ◽  
Author(s):  
M.M. Petersen ◽  
B. Avery ◽  
T. Greve ◽  
I.B. Bøgh

Development of two-photon laser scanning microscopy (TPLSM) has made it possible to conduct several recordings over time of early stage embryos without compromising viability. To use TPLSM to study structures within the oocyte it is necessary to remove at least part of the cumulus cells to prevent emitted light from being blocked. Aspiration of cumulus oocyte complexes (COC) through a denudation pipette creates a “window” through which the emitted light can escape and be recorded. To allow repeated recordings of the same location within an object it is important to avoid movement of the object. Gelatine (Gel) and poly-l-lysine (PLL) have previously been used to promote adhesion of cells in culture. The aim of our study was to develop a method to avoid movement during IVM of partially denuded COCs without compromising oocyte viability. Previous experiments in our lab showed that partial denudation of COC had no effect on embryo development (unpublished). Bovine COCs were obtained from abattoir ovaries. In the control group COCs were placed in non-treated dishes. In the experimental groups, they were placed in Gel- or PLL-coated dishes, either intact or partially denuded, where the length of cumulus cell “tails” was shortened to around 200 μm on each side of the oocyte. The coated dishes were prepared 24 h prior to IVM with 200 μL of 0.1% Gel (Sigma, Copenhagen, Denmark, G2500) or 200 μL 0.01% PLL (Sigma, P-4832). Partial denudation of COCs was performed with a 127–129 μm diameter denudation pipette. Standard procedures were used for IVM (23 h in DMEM with 5% serum and eCG/hCG), IVF (23 h in TALP), and IVC (SOF with 10% serum); IVM and IVF were incubated at 38.5°C in 5% CO2 in air, and IVC at 5% CO2 in 5% O2. The study was based on a total of 1151 oocytes and 3 replicates. Day 8 blastocyst (BL) rates, BL kinetics, and morphology were used as endpoints to assess oocyte maturation. Kinetics/morphology were graded by a scoring system: hatched/excellent 3, expanded/good 2, non-expanded/poor 1. COCs placed in Gel- or PLL-coated dishes did not move during handling of the dishes. The BL rates in the Gel group were 37%, 25%, and 17%, and in the PLL group 24%, 21%, and 12%, for the control, intact, and partially denuded COCs, respectively. In the Gel group the BL rates showed a decreasing trend (P < 0.0036), whereas in only the PLL group the BL rates from the partially denuded COC differed from the control and the intact COCs (P < 0.008). No significant differences were seen between blastocyst kinetics (Gel/PLL 1.9/1.9, 1.8/1.9, 1.6/1.7) or morphology (Gel/PLL 2.2/2.4, 2.0/2.5, 2.2/2.1) in the control, intact or partially denuded groups. Fisher's exact test used. We conclude that it is possible to avoid movement of COCs during IVM without compromising oocyte maturation in dishes coated with Gel or PLL, if the cumulus layer is intact. The BL rates are compromised if COCs are partially denuded and the “cumulus tails” shortened before IVM in Gel or PLL coated dishes, whereas kinetics and morphology are unaffected. This research was funded by the Danish Research Agency, no. 23-023-0133.


2016 ◽  
Vol 28 (2) ◽  
pp. 160
Author(s):  
S. Lee ◽  
C. Khoirinaya ◽  
J.-X. Jin ◽  
G. A. Kim ◽  
B.-C. Lee

In vitro studies on mammalian oocytes have shown that follicular fluid-meiosis activating sterol (FF-MAS) can overcome the inhibitory effect of hypoxanthine (Hx) on the resumption of meiosis. FF-MAS, an intermediate in the cholesterol biosynthesis pathway, is converted to testis meiosis–activating sterol by a sterol Δ14-reductase. AY9944 A-7, an inhibitor of Δ14-reductase and Δ7-reductase, induces accumulation of FF-MAS by inhibiting its metabolism. The aim of this study was to evaluate the effects of AY9944 A-7 on meiotic resumption of porcine oocytes, cumulus cell expansion, and gene expression related to M-phase-promoting factor (MPF), mitogen-activated protein kinase (MAPK), and oocyte maturation in oocytes and related to cumulus expansion in cumulus cells. In experiment 1, 1136 cumulus-oocyte complexes (COCs) were cultured in IVM media with 4 different concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 in addition to a meiotic inhibitor (Hx, 4 mM) for 44 h. Oocytes treated with 10 and 20 μM AY9944 A-7 in the presence of Hx had significantly higher GVBD and M2 rates than the control group. However, 40 μM AY9944 A-7 significantly decreased GVBD and M2 rates and increased degeneration of oocytes compared with other groups. In experiment 2, 600 COCs were cultured in IVM media with 4 different concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 in the absence of Hx for 44 h. Cumulus expansion of 40 μM AY9944 A-7 treated group was significantly decreased compared with other groups. In experiment 3, we evaluate the effects of AY9944 A-7 on gene expression, and the experiment was replicated four times. Data on gene expression were analysed using Student’s t-test. Oocytes treated with 10 μM AY9944 A-7 increased expression of genes involved in MPF (Cyclin B and Cdc2), MAPK (C-mos), and oocyte maturation (GDF9 and BMP15). Cumulus cells treated with 10 μM AY9944 A-7 decreased cumulus expansion-related genes (Has2, Tnfaip6, Ptgs2, and Ptx-3). In conclusion, our results suggest that although 10 μM AY9944 A-7 decreased cumulus expansion-related genes, there was no difference in cumulus expansion and it induced meiotic resumption of porcine oocytes with increased MPF, MAPK, and oocyte maturation-related genes. Further studies are needed to evaluate the effect of AY9944 A-7 on porcine embryo development. This study was supported by Ministry Of Trade, Industry & Energy (#10048948), Korea IPET (#114059–3), Research Institute for Veterinary Science, TS Corporation, and the BK21 plus program.



2008 ◽  
Vol 14 (6) ◽  
pp. 549-560 ◽  
Author(s):  
Morten R. Petersen ◽  
Michael Hansen ◽  
Birthe Avery ◽  
Ingrid B. Bøgh

AbstractOocyte maturation is known to affect the chances for successful fertilization, embryonic development, establishment of pregnancy and delivery of a live, healthy, and viable offspring. Two-photon laser scanning microscopy (TPLSM) has previously been used to evaluate early embryonic development without a detectable impairment of subsequent development, but has never been applied to assess mammalian oocytes throughout in vitro maturation (IVM). Visualization of structures within live oocytes during IVM, followed by fertilization and embryo culture, may improve the understanding of oocyte maturation. To visualize structures within bovine oocytes using TPLSM, it is necessary to remove the cumulus cells that normally surround the oocyte during maturation. Repeated visualization of structures within the same oocyte is possible, if movement of the oocyte can be avoided. In this article, we describe the development of a method for repeated intravital imaging of denuded bovine oocytes using an upright TPLSM equipped with a specially constructed incubator. Oocytes were stained with Hoechst 33258, and the nuclear structures were evaluated. Oocyte fertilization rate was not affected by TPLSM exposure, but the developmental capacity of the denuded oocytes was significantly reduced. This is, to our knowledge, the first article describing repeated intravital imaging during mammalian oocyte maturation using TPLSM.



2017 ◽  
Vol 29 (1) ◽  
pp. 194
Author(s):  
S.-Y. Park ◽  
H.-J. Park ◽  
J.-W. Kim ◽  
J.-Y. Park ◽  
S.-G. Yang ◽  
...  

Bisphenol A (BPA) is well known as oestrogen-like chemical and it is widely used in plastic products. Many studies have reported that BPA exposure has a well-known toxicity effect on reproduction function, such as reducing the number of ovulated oocytes, oocyte quality, and maturation rate. Recently, BPA induced mitochondrial-derived reactive oxygen species (mito-ROS) and disrupted mitochondrial homeostasis by increasing of superoxide anions production. In this study, we investigated how the regulation of mito-ROS production may play a critical role in meiotic maturation and expansion of cumulus cells during the in vitro maturation progression of porcine oocytes. Furthermore, we investigated the toxicity effect of BPA exposure on mitochondrial functions and mito-ROS production during porcine oocyte maturation in vitro. All results were analysed using a 1-way ANOVA followed by Bonferroni’s and Tukey’s Multiple Comparison Test and t-tests. First, porcine oocytes were matured in NCSU-23 medium supplemented with BPA (50, 75, and 100 µM) for 44 h. Our results indicated that the rates of matured oocytes were significantly decreased by BPA exposure in a dose-dependent manner (69.4 ± 5.1, 50.9 ± 6.3, and 29.9 ± 5.8% for BPA treatments of 50, 75, and 100 μM) compared with control group (70.2 ± 7.8%; P < 0.05). Next, we confirmed the secretion functions of oocyte and cumulus cell of cumulus-oocyte complex (COC) and ROS production. Cumulus cell secretion factors (has2, tnfaip6, and cx37) mRNA expression in COC were decreased in the BPA-treated (75 µM) group. In addition, mRNA expressions of mitochondrial-specific antioxidant enzymes (sod2, P < 0.001; prdx3, P < 0.01; prdx5, P < 0.001) and mitochondrial apoptosis genes (bax and caspase-3, P < 0.01) were significantly increased in COC of the BPA-treated (75 µM) group. We measured mitochondrial membrane potential and mito-ROS production using JC-1 analysis and Mito-SOX staining, respectively. The BPA treatment caused a rapid decrease of mitochondrial membrane potential maintenance and increase of mito-ROS production in porcine COC. Moreover, mitochondrial-specific ROS scavenger, Mito-Tempo (0.1 µM) treatment was significantly increased the meiotic maturation of porcine oocytes compared with control group (78.5 ± 3.5 v. 65.8 ± 5.0%; P < 0.05). Based on these results, we first confirmed that BPA exposure reduces the meiotic maturation and cumulus cells expansion of COC by increasing mito-ROS production during porcine oocyte maturation in vitro. Therefore, controlling of mito-ROS for mitochondrial function maintenance and apoptosis plays a critical role in improving porcine oocyte maturation in vitro. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ01117604) and the Bio-industry Technology Development Program (316037–04–1-HD020) through the Rural Development Administration, the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.



2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shaoe Zhang ◽  
Xiao Wang ◽  
Xiaotao Shi ◽  
Honglue Tan ◽  
Himanshu Garg

Background. External socking and washing with the Chinese herbal Sanhuang Jiedu decoction (SHJD) can effectively control local limb infections with bone and implant exposure. However, the antibiofilm activities of this decoction in vitro have not yet been investigated. Therefore, the aim of this study was to examine the effects and characteristics of SHJD on the mature biofilms of multidrug-resistant staphylococci on a titanium surface. Methods. Biofilm-forming methicillin-resistant Staphylococcus epidermidis ATCC 35984 and S. aureus ATCC 43330, and non-biofilm-forming S. epidermidis ATCC 12228 were selected as the experimental strains. The mature biofilms were prepared on titanium surfaces. The five experimental groups were based on dilution concentrations (DC) of SHJD: the control group (biofilm incubated with 0.85% NaCl solution), the SHJD (DC:1/8) group (initial SHJD solution was diluted 1/8), the SHJD (DC:1/4) group, the SHJD (DC:1/2) group, and the SHJD (DC:1/1) group (initial SHJD solution). The effects of SHJD on the mature biofilms were observed with the bacterial spread plate method, crystal violet (CV) staining, scanning electron microscopy, and confocal laser scanning microscopy. Results. After culture in tryptic soy broth for 72 h, ATCC 43300 and ATCC 35984 produced mature biofilms and ATCC 12228 did not. The optical density value of ATCC 12228 was 0.11 ± 0.02 , significantly lower than that of ATCC 35984 ( 0.42 ± 0.05 ) or ATCC 43300 ( 0.41 ± 0.03 ) ( P < 0.05 ). The mature biofilms of ATCC 43300 and ATCC 35984 clearly disintegrated when incubated for 12–24 h with SHJD (DC:1/1) or SHJD (DC:1/2), showing only scattered bacterial adhesion. In the SHJD (DC:1/4) group, although many residual bacterial colonies still clustered together, presenting a biofilm structure, it was very looser than that in the SHJD (DC:1/8) group in which the biofilm was similar to that in the control group. For ATCC 12228, only colony adhesion was observed, and the number of colonies decreased as the concentration of SHJD or the culture period increased. The quantitative results for the bacterial spread plate and CV staining showed significant differences between the SHJD groups ( P < 0.05 ). Conclusion. SHJD has antibiofilm activity against multidrug-resistant Staphylococcus strains. It weakens or disrupts already-formed mature biofilms on titanium surfaces in a concentration- and incubation time-dependent manner.



Reproduction ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 859-867 ◽  
Author(s):  
Xiao-Qian Meng ◽  
Ke-Gang Zheng ◽  
Yong Yang ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
...  

Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.



2010 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
D. D. Bücher ◽  
M. A. Castro ◽  
M. E. Silva ◽  
M. A. Berland ◽  
I. I. Concha ◽  
...  

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine that stimulates proliferation, differentiation and function in different cells types. We have previously demonstrated (Bücher DD et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 146 abst.) that both subunits of GM-CSF receptor are expressed in granulosa cells from antral follicles in bovine ovaries. Also, we determined that the cytokine enhances glucose uptake through facilitative hexose transporters in granulosa cells in primary culture. The goals of the present study were to characterize the expression of GM-CSF receptor in cumulus cells and oocytes from bovine antral follicles and to determine its effects on in vitro-matured bovine COCs in a chemically defined medium. To determine the presence of a and |5 subunits of GM-CSF receptor, COCs were aspirated from follicles <8 mm in diameter, fixed, and submitted to immunocytochemistry. To study the effect of GM-CSF on in vitro maturation of oocytes, COCs (n =481) were cultured using serum-free medium (SOF) containing 0, 1, 10, and 100 ng mL-1 of human recombinant GM-CSF (R&D Systems, Inc., Minneapolis, MN, USA) for 22 h at 39°C, 5% CO2 in humidified air. Nuclear stage, cumulus expansion, cumulus cell number, and viability were analyzed after in vitro maturation. Cumulus expansion was assessed using the cumulus expansion index (CEI) (Fagbohun C and Down S 1990 Biol. Reprod. 42, 413-423). Nuclear stage was evaluated using aceto-orcein stain. To determine cumulus cell viability and number, COCs (n = 10-12 per group) were transferred into an Eppendorf tube and cumulus cells were removed by vortexing for 3 min, stained with trypan blue and counted with a hemocytometer. The study was conducted in 6 replicates. Data from cumulus expansion and cell number were analyzed by Kruskal-Wallis analysis. Data for nuclear stage and cell viability were analyzed by chi-square analysis and one way ANOVA, respectively. Both receptor subunits were present in cumulus cells and oocytes from COCs. COCs cultured in 10 and 100 ng mL-1 GM-CSF had CEI scores (0.8 and 1.22, respectively) greater (P < 0.01) than controls (0.2), but the proportion of COCs displaying second metaphase did not differ (P = 0.5) among treatment groups. GM-CSF at a concentration of 100 ng mL-1 increased (P < 0.01) cumulus cell viability by more than 20% compared to the control group. Similarly, GM-CSF at concentrations of 10 and 100 ng mL-1 increased (P < 0.05) cumulus cell number by more than 20% and 45%, respectively, from the control group. The use of a specific inhibitor of PI3 kinase (Ly294002; 10 and 100 μM) blocked the stimulatory effect of GM-CSF on cumulus expansion, cell viability, and cell number. In conclusion, the results of the study suggest a plausible modulator role of GM-CSF in the metabolism and function of cumulus cells and oocytes during in vitro maturation. Funding from Faculty of Veterinary Sciences, Universidad Austral de Chile, MECESUP AUS-0005, AUS-0601, and DID D-2006-24 and from Universidad Católica de Temuco, research grant 2007 DGI-CDA-04.



2009 ◽  
Vol 21 (1) ◽  
pp. 165
Author(s):  
M. A. Velazquez ◽  
H. Niemann

It has been hypothesized that high non-physiological IGF-1 levels are partially responsible for the recurrent pregnancy loss observed in women with the polycystic ovary syndrome (Eng GS et al. 2007 Diabetes 56, 2228–2234). The aim of this study was to determine the effect of supraphysiological concentrations of IGF-1 on blastocyst production and the occurrence of apoptosis in bovine embryos, which are a good model for human embryo development (Baumann CG et al. 2007 Mol. Reprod. Dev. 74, 1345–1353). COC obtained by slicing from abattoir ovaries were matured (TCM-199, Sigma) for 24 h and fertilized (Fert-TALP) for 18 h (Day 0) in vitro. Two different IGF-1 (Recombinant human IGF-1, R&D Systems GmbH, Wiesbaden, Germany) concentrations (supraphysiological = 1000 ng mL–1 and physiological = 100 ng mL–1) were added to the culture media (Synthetic oviduct fluid/BSA) and compared with a control group (no IGF-1 supplementation). On Day 8, blastocyst rates (22 replicates) were recorded and DNA degradation was detected in blastocyst nuclei using a cell death detection kit (Roche Diagnostics GmbH, Mannheim, Germany) based on the terminal deoxinucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) principle. Embryos (n = 27 [control], n = 29 [both IGF-1 groups]) from 4 replicates were examined by confocal laser scanning microscopy. Data were analyzed by ANOVA and the Fisher exact test using the SigmaStat 2.0 software package (Jandel Scientific, San Rafael, CA). Cleavage was numerically improved by both, 1000 (59.1 ± 1.8) and 100 (58.2 ± 2.8) ng IGF-1 over controls (53.5 ± 2.2), but the differences did not reach statistical significance (P = 0.22). The proportion of hatched blastocysts was enhanced by 100 (5.8 ± 1.0, P = 0.03) and 1000 (5.1 ± 0.7, P = 0.03) ng IGF-1 compared to controls (2.8 ± 0.6). Total blastocyst rate was increased by 100 ng IGF-1 (34.4 ± 1.9, P = 0.02) over controls (28.3 ± 1.7), but not by 1000 ng IGF-1 (29.1 ± 1.6 P = 0.75). The 100 ng IGF-1 group (38.5 ± 3.7) had fewer degenerated embryos (P = 0.01) compared to 1000 ng IGF-1 (49.7 ± 3.3). The proportion of embryos displaying at least one apoptotic cell was greater in the 1000 ng IGF-1 group over controls (96% v. 77% P = 0.04). The number of blastomeres with TUNEL-positive nuclei per embryo was higher in the supraphysiological group (5.5 ± 0.6, P < 0.001) compared with the control (2.3 ± 0.4) and the physiological group (2.5 ± 0.3). There were no significant differences between the control and the 100 ng IGF-1 group in this regard (P = 0.49). In conclusion, supraphysiological concentrations of IGF-1 do not increase blastocyst production but increase levels of apoptosis in bovine embryos produced in vitro. M. A. V. is in the PhD program of the University of Veterinary medicine, Hannover, Germany, and is supported by the German Academic Exchange Service (DAAD)



2017 ◽  
Vol 29 (1) ◽  
pp. 202 ◽  
Author(s):  
A. Lange-Consiglio ◽  
C. Perrini ◽  
P. Esposti ◽  
F. Cremonesi

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at −80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg mL−1 of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV mL−1 labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV mL−1 compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV mL−1 provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.



Author(s):  
Aslihan Turhan ◽  
Miguel Tavares Pereira ◽  
Gerhard Schuler ◽  
Ulrich Bleul ◽  
Mariusz P Kowalewski

Abstract Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P &lt; 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P &lt; 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P &lt; 0.05) or PX-478 (P &lt; 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.



Sign in / Sign up

Export Citation Format

Share Document