scholarly journals Susceptibility of Mature Staphylococcus Biofilms to Chinese Herbal Decoction Sanhuang Jiedu: An In Vitro Study

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shaoe Zhang ◽  
Xiao Wang ◽  
Xiaotao Shi ◽  
Honglue Tan ◽  
Himanshu Garg

Background. External socking and washing with the Chinese herbal Sanhuang Jiedu decoction (SHJD) can effectively control local limb infections with bone and implant exposure. However, the antibiofilm activities of this decoction in vitro have not yet been investigated. Therefore, the aim of this study was to examine the effects and characteristics of SHJD on the mature biofilms of multidrug-resistant staphylococci on a titanium surface. Methods. Biofilm-forming methicillin-resistant Staphylococcus epidermidis ATCC 35984 and S. aureus ATCC 43330, and non-biofilm-forming S. epidermidis ATCC 12228 were selected as the experimental strains. The mature biofilms were prepared on titanium surfaces. The five experimental groups were based on dilution concentrations (DC) of SHJD: the control group (biofilm incubated with 0.85% NaCl solution), the SHJD (DC:1/8) group (initial SHJD solution was diluted 1/8), the SHJD (DC:1/4) group, the SHJD (DC:1/2) group, and the SHJD (DC:1/1) group (initial SHJD solution). The effects of SHJD on the mature biofilms were observed with the bacterial spread plate method, crystal violet (CV) staining, scanning electron microscopy, and confocal laser scanning microscopy. Results. After culture in tryptic soy broth for 72 h, ATCC 43300 and ATCC 35984 produced mature biofilms and ATCC 12228 did not. The optical density value of ATCC 12228 was 0.11 ± 0.02 , significantly lower than that of ATCC 35984 ( 0.42 ± 0.05 ) or ATCC 43300 ( 0.41 ± 0.03 ) ( P < 0.05 ). The mature biofilms of ATCC 43300 and ATCC 35984 clearly disintegrated when incubated for 12–24 h with SHJD (DC:1/1) or SHJD (DC:1/2), showing only scattered bacterial adhesion. In the SHJD (DC:1/4) group, although many residual bacterial colonies still clustered together, presenting a biofilm structure, it was very looser than that in the SHJD (DC:1/8) group in which the biofilm was similar to that in the control group. For ATCC 12228, only colony adhesion was observed, and the number of colonies decreased as the concentration of SHJD or the culture period increased. The quantitative results for the bacterial spread plate and CV staining showed significant differences between the SHJD groups ( P < 0.05 ). Conclusion. SHJD has antibiofilm activity against multidrug-resistant Staphylococcus strains. It weakens or disrupts already-formed mature biofilms on titanium surfaces in a concentration- and incubation time-dependent manner.

2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2009 ◽  
Vol 21 (1) ◽  
pp. 165
Author(s):  
M. A. Velazquez ◽  
H. Niemann

It has been hypothesized that high non-physiological IGF-1 levels are partially responsible for the recurrent pregnancy loss observed in women with the polycystic ovary syndrome (Eng GS et al. 2007 Diabetes 56, 2228–2234). The aim of this study was to determine the effect of supraphysiological concentrations of IGF-1 on blastocyst production and the occurrence of apoptosis in bovine embryos, which are a good model for human embryo development (Baumann CG et al. 2007 Mol. Reprod. Dev. 74, 1345–1353). COC obtained by slicing from abattoir ovaries were matured (TCM-199, Sigma) for 24 h and fertilized (Fert-TALP) for 18 h (Day 0) in vitro. Two different IGF-1 (Recombinant human IGF-1, R&D Systems GmbH, Wiesbaden, Germany) concentrations (supraphysiological = 1000 ng mL–1 and physiological = 100 ng mL–1) were added to the culture media (Synthetic oviduct fluid/BSA) and compared with a control group (no IGF-1 supplementation). On Day 8, blastocyst rates (22 replicates) were recorded and DNA degradation was detected in blastocyst nuclei using a cell death detection kit (Roche Diagnostics GmbH, Mannheim, Germany) based on the terminal deoxinucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) principle. Embryos (n = 27 [control], n = 29 [both IGF-1 groups]) from 4 replicates were examined by confocal laser scanning microscopy. Data were analyzed by ANOVA and the Fisher exact test using the SigmaStat 2.0 software package (Jandel Scientific, San Rafael, CA). Cleavage was numerically improved by both, 1000 (59.1 ± 1.8) and 100 (58.2 ± 2.8) ng IGF-1 over controls (53.5 ± 2.2), but the differences did not reach statistical significance (P = 0.22). The proportion of hatched blastocysts was enhanced by 100 (5.8 ± 1.0, P = 0.03) and 1000 (5.1 ± 0.7, P = 0.03) ng IGF-1 compared to controls (2.8 ± 0.6). Total blastocyst rate was increased by 100 ng IGF-1 (34.4 ± 1.9, P = 0.02) over controls (28.3 ± 1.7), but not by 1000 ng IGF-1 (29.1 ± 1.6 P = 0.75). The 100 ng IGF-1 group (38.5 ± 3.7) had fewer degenerated embryos (P = 0.01) compared to 1000 ng IGF-1 (49.7 ± 3.3). The proportion of embryos displaying at least one apoptotic cell was greater in the 1000 ng IGF-1 group over controls (96% v. 77% P = 0.04). The number of blastomeres with TUNEL-positive nuclei per embryo was higher in the supraphysiological group (5.5 ± 0.6, P < 0.001) compared with the control (2.3 ± 0.4) and the physiological group (2.5 ± 0.3). There were no significant differences between the control and the 100 ng IGF-1 group in this regard (P = 0.49). In conclusion, supraphysiological concentrations of IGF-1 do not increase blastocyst production but increase levels of apoptosis in bovine embryos produced in vitro. M. A. V. is in the PhD program of the University of Veterinary medicine, Hannover, Germany, and is supported by the German Academic Exchange Service (DAAD)


2019 ◽  
Vol 20 (14) ◽  
pp. 3604 ◽  
Author(s):  
Lucinda J. Bessa ◽  
Julia R. Manickchand ◽  
Peter Eaton ◽  
José Roberto S. A. Leite ◽  
Guilherme D. Brand ◽  
...  

Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in a large variety of infections. Their co-occurrence in the same site of infection has been frequently reported and is linked to enhanced virulence and difficulty of treatment. Herein, the antimicrobial and antibiofilm activities of an intragenic antimicrobial peptide (IAP), named Hs02, which was uncovered from the human unconventional myosin 1H protein, were investigated against several P. aeruginosa and S. aureus strains, including multidrug-resistant (MDR) isolates. The antibiofilm activity was evaluated on single- and dual-species biofilms of P. aeruginosa and S. aureus. Moreover, the effect of peptide Hs02 on the membrane fluidity of the strains was assessed through Laurdan generalized polarization (GP). Minimum inhibitory concentration (MIC) values of peptide Hs02 ranged from 2 to 16 μg/mL against all strains and MDR isolates. Though Hs02 was not able to hamper biofilm formation by some strains at sub-MIC values, it clearly affected 24 h preformed biofilms, especially by reducing the viability of the bacterial cells within the single- and dual-species biofilms, as shown by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) images. Laurdan GP values showed that Hs02 induces membrane rigidification in both P. aeruginosa and S. aureus. Peptide Hs02 can potentially be a lead for further improvement as an antibiofilm agent.


2018 ◽  
Vol 14 ◽  
pp. 756-771 ◽  
Author(s):  
Sabine Schuster ◽  
Beáta Biri-Kovács ◽  
Bálint Szeder ◽  
Viktor Farkas ◽  
László Buday ◽  
...  

Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates.


2021 ◽  
Author(s):  
Ye Han

Abstract This study aimed to investigate the differences in growth and virulence (EPSs and acidogenicity) of Streptococcus mutans biofilms (S. mutans) according to the different times of cigarette smoking (CS) treatment. S. mutans biofilms (74-hour-old) were formed on saliva-coated hydroxyapatite disks. The biofilms were treated with CS at different times per day (one time, three times, and six times/day). The control group did not receive CS treatment. Acidogenicity, dry weight, colony-forming units, water-soluble/insoluble extracellular polysaccharides, and intracellular polysaccharides were analyzed and confocal laser scanning microscopy images were obtained of the 74-h-old biofilms. The 74-h-old biofilms on sHA discs in the 6 times/day CS treatment group showed the lowest biofilm accumulation and extracellular polysaccharide amount compared with the control group and other CS treatment groups. In the CLSM study, the biofilms in the six times/day CS treatment group also showed the lowest bacterial count (live and dead cells) and EPS biovolume. CS has an obvious inhibition on the growth of S. mutans biofilms, the degree of inhibition is proportional to the number of CS treatments.


2018 ◽  
Vol 27 (2) ◽  
Author(s):  
Tatit Nurseta ◽  
Yahya Irwanto ◽  
I W.A. Wiyasa ◽  
Rahajeng Rahajeng ◽  
Imelda Imelda ◽  
...  

Background: Several studies have reported that curcumin exerts chemopreventive effects in various type of cancers, through several mechanisms, however, the effect of curcumin on carcinogenesis in patients with hydatidiform mole has not yet been investigated. This study was conducted to evaluate the effect of curcumin on apoptosis, proliferation, and nuclear translocation of endothelial nitricoxide synthase in trophoblast cells induced by estradiol in complete hydatidiform mole (CHM).Methods: In this in vitro study, trophoblast cells were divided into six groups, the control group (trophoblast cells were exposed to 100 pg/mL of 17-β estradiol) and the treatment group (trophoblast cells were exposed to 100 pg/mL of 17-β estradiol in the presence of curcumin with doses: 50, 100, 200, 400, and 800 µM). At the end of study, the cell proliferation was analyzed using MTT assay and apoptosis with TUNEL test in each group thropoblast cell. eNOS translocation was assayed using confocal laser scanning microscopy at the various dose of curcumin.Results: Curcumin at the doses of 200, 400, and 800 µM significantly decreased the proliferation and increased the apoptotic index in curcumin-treated group compared to those in the control group (p<0.05). All doses of curcumin treatment significantly decreased the nuclear eNOS expression compared to that in the control group. The three highest doses of curcumin increased cytoplasmic eNOS expression compared to that in control group.Conclusion: Curcumin inhibits the proliferation and modulates the apoptosis of trophoblast cells induced by estradiol in CHM involvement.


2004 ◽  
Vol 17 (10) ◽  
pp. 1095-1102 ◽  
Author(s):  
Helge Weingart ◽  
Stephan Stubner ◽  
Alexander Schenk ◽  
Matthias S. Ullrich

Coronatine (COR) is a chlorosis-inducing phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. Confocal laser scanning microscopy was used to investigate in vitro and in planta expression of COR genes by two model organisms, P. syringae pv. glycinea PG4180, a pathogen of soybean, and P. syringae pv. tomato DC3000, a pathogen of tomato and crucifers. Previously, it was shown in vitro that the cma operon involved in COR synthesis in PG4180 is expressed in a temperature-dependent manner, with maximal rates at 18°C and low activity at 28°C. However, nothing was known about the influence of temperature on the expression of COR biosynthetic genes in planta. Therefore, transcriptional fusions of the PG4180 and DC3000 cma promoter regions to a promoterless egfp gene were constructed and expressed in both P. syringae strains. The fluorescence patterns in response to temperature during growth of a strain in vitro were consistent with its COR production and the cma transcript abundance as revealed by RNA dot blot hybridization. Quantification of fluorescence indicated that cma promoter activity was dependent on the genetic background of the host strain. Expression of cma∷egfp in PG4180 was temperature-dependent in minimal medium as well as inside the plant tissue. In contrast, transcription of the cma operon was not significantly affected by temperature in DC3000. However, cells of DC3000 harboring the cma∷egfp fusions showed higher levels of fluorescence when recovered from infected host plants compared with cells grown in minimal medium. These results indicate that the signals for induction of COR biosynthesis differ significantly in PG4180 and DC3000.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Loyana Silva Godinho ◽  
Lara Soares Aleixo de Carvalho ◽  
Clarissa Campos Barbosa de Castro ◽  
Mirna Meana Dias ◽  
Priscila de Faria Pinto ◽  
...  

Schistosomiasis, a parasitic disease caused by trematode flatworms of the genusSchistosoma, affects more than 200 million people worldwide, and its control is dependent on a single drug, praziquantel.Tanacetum vulgare(Asteraceae) is used in folk medicine as a vermifuge. This study aimed to investigate thein vitroschistosomicidal activity of the crude extract (TV) and the essential oil (TV-EO) from the aerial parts ofT. vulgare. TV-EO was obtained by hydrodistillation and analyzed by GC/MS, which allowed the identification ofβ-thujone (84.13%) as the major constituent. TV and TV-EO, at 200 μg/mL, decreased motor activity and caused 100% mortality of all adult worms. At 100 and 50 μg/mL, only TV caused death of all adult worms, while TV-EO was inactive. TV (200 μg/mL) was also able to reduce viability and decrease production of developed eggs. Confocal laser scanning microscopy showed morphological alterations in the tegument of theS. mansonisurface after incubation with TV (50 and 100 μg/mL). Quantitative analysis on the schistosomes tegument showed that TV caused changes in the numbers of tubercles ofS. mansonimale worms in a dose-dependent manner. The findings suggest thatT. vulgareis a potential source of schistosomicidal compounds.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Arunkumar Karunanidhi ◽  
Ehsanollah Ghaznavi-Rad ◽  
Rukman Awang Hamat ◽  
Mallikarjuna Rao Pichika ◽  
Leslie Than Thian Lung ◽  
...  

The present study assessed the in vitro antibacterial and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic cells and biofilm structures of clinically significant antibiotic resistant pathogens, with a special emphasis on methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and emerging pathogens, Acinetobacter baumannii and Stenotrophomonas maltophilia. Antibacterial activities were determined through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill kinetics, and electron microscopy. Antibiofilm activity was assessed by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and by confocal laser scanning microscopy (CLSM). The zone of inhibition ranged from 13 to 33 mm, while the MICs and MBCs ranged from 16 to 1024 μg mL−1. Both ASHE and ASDE completely eradicated overnight cultures of the test microorganisms, including antibiotic resistant strains. Time-kill studies showed that the extracts were strongly bactericidal against planktonic cultures of S. aureus, MRSA, Acinetobacter baumannii, and S. maltophilia as early as 4 hours postinoculation (hpi). ASHE and ASDE were shown to inhibit preformed biofilms of the four biofilm phenotypes tested. Our results demonstrate the potential therapeutic application of ASHE and ASDE to inhibit the growth of gram-positive and gram-negative biofilms of clinical significance and warrant further investigation of the potential of A. stipitatum bulbs against biofilm-related drug resistance.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
James Song ◽  
Kerryl E. Greenwood-Quaintance ◽  
Haluk Beyenal ◽  
...  

ABSTRACT The antibiofilm activity of a hydrogen peroxide-generating electrochemical scaffold (e-scaffold) was determined against mono- and trispecies biofilms of methicillin-resistant Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, and Candida albicans. Significant time-dependent decreases were found in the overall CFU of biofilms of all three monospecies and the trispecies forms. Confocal laser scanning microscopy showed dramatic reductions in fluorescence intensities of biofilm matrix protein and polysaccharide components of e-scaffold-treated biofilms. The described e-scaffold has potential as a novel antibiotic-free strategy for treating wound biofilms.


Sign in / Sign up

Export Citation Format

Share Document