333 IN VIVO PREMATURATION AFFECTS PROTEIN SYNTHESIS AT THE BEGINNING OF IN VITRO MATURATION

2006 ◽  
Vol 18 (2) ◽  
pp. 274
Author(s):  
H. M. Knijn ◽  
P. L. A. M. Vos ◽  
S. J. Dieleman ◽  
P. J. M. Hendriksen

The cumulus–oocyte complex (COC) from a preovulatory follicle is better equipped than a COC from a small healthy follicle to develop into a blastocyst. This might be due to the presence of mRNAs and proteins in the oocyte and/or cumulus cells from which the expression is increased or induced during the prematuration period. There are several reports that beginning atresia enhances in vitro oocyte competence and the processes of atresia show similarities with prematuration on an ultrastructural level. Therefore, we investigated the effect of in vivo prematuration and atresia on the protein synthesis in bovine oocytes collected from preovulatory and small follicles during the first period of IVM. To study the follicular population of an undisturbed cycle we synchronized 14 cows with a norgestomet ear implant. We performed progesterone and LH analysis (Hendriksen et al. 2003 Biol. Reprod. 69, 2036–2044) to determine the start of luteolysis and the LH surge. At 48–62 h after the start of luteolysis, 10 cows were ovariectomized (OVX) and were considered to be shortly before the LH surge. At 1.5–3 days after the LH surge, at the beginning of a new cycle, four cows were OVX. From the ovaries collected before the LH surge the preovulatory follicle (POF) and all follicles ≥3 mm were dissected. From the ovaries collected at the start of a new cycle all follicles ≥3 mm were dissected. All follicles were classified for degree of atresia as non-atretic (NA), light atretic (LA), and atretic (A) by the proportion of apoptotic granulosa cells and levels of estradiol and progesterone, and of small IGF-binding proteins (IGFBPs) in the follicular fluid (Hendriksen et al. 2003). The COCs were individually incubated for 4 h in maturation medium containing 35S-labeled methionine/cysteine (Amersham-Pharmacia, Sweden). After separation of oocyte and cumulus cells, the proteins produced in the oocyte were analyzed by 1-D electrophoresis (SDS-PAGE, ExcelGel-12.5%, Amersham-Pharmacia). Gels were dried and digitized images were obtained by use of a Phosphor Imaging System (Molecular Imager, Bio-Rad, Hercules, CA, USA). Twenty-eight different proteins were distinguished. To compare different oocytes, the 35S incorporation per protein band was calculated as proportion of the 35S incorporation of all bands of the oocyte. The total amount of newly synthetized proteins per oocyte was normalized to the oocyte on the gel with the highest incorporation of 35S. In all POF oocytes (n = 7), the total amount of newly synthetized protein was lower than that in the oocytes from the NA and LA follicles (Table 1). This suggests that already during in vivo prematuration new proteins were synthesized in POFs and therefore less protein synthesis occurs during maturation. We can speculate that oocytes from small follicles have to synthesize many proteins during the beginning of IVM to make up for what is normally produced during the prematuration period. In atretic oocytes fewer proteins were synthesized, which suggests that these oocytes have either undergone prematuration-like processes or are less viable. Nevertheless, some proteins remain to be synthesized in POFs, such as, for example, protein number ‘p 23’. Table 1. New proteins at the onset of IVM in oocytes from small follicles and POFs

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3360-3368 ◽  
Author(s):  
Zhilin Liu ◽  
Daniel G. de Matos ◽  
Heng-Yu Fan ◽  
Masayuki Shimada ◽  
Stephen Palmer ◽  
...  

Ovulation has long been regarded as a process resembling an inflammatory response. Recent studies indicate that genes associated with innate immune responses were also expressed during the ovulation process. Because the innate immune genes are induced in cumulus cell oocyte complexes (COCs) later than the inflammation-associated genes, we hypothesize that COC expansion is dependent on specific sequential changes in cumulus cells. Because IL-6 is a potent mediator of immune responses, we sought to determine what factors regulate the induction of Il6 mRNA in COCs and what impact IL-6 alone would have on COC expansion. We found that the levels of Il6 mRNA increased dramatically during COC expansion, both in vivo and in vitro. Moreover, IL-6, together with its soluble receptor (IL-6SR), could bypass the need for either amphiregulin and/or prostaglandin E2 to induce the expansion of COCs. This ability of IL-6/IL-6SR to induce COC expansion was blocked by the inhibitors to p38MAPK, MAPK kinase 1/2, and Janus kinase. More importantly, when COCs were in vitro maturated in the presence of IL-6, they had a significantly higher embryo transfer rate than the ones without IL-6 and comparable with in vivo matured oocytes. IL-6/IL-6SR activated multiple signaling pathways (Janus kinase/signal transducer and activator of transcription, ERK1/2, p38MAPK, and AKT) and progressively induced genes known to impact COC expansion, genes related to inflammation and immune responses, and some transcription factors. Collectively, these data indicate that IL-6 alone can act as a potent autocrine regulator of ovarian cumulus cell function, COC expansion, and oocyte competence.


Reproduction ◽  
2017 ◽  
Vol 153 (3) ◽  
pp. R109-R120 ◽  
Author(s):  
Hannah M Brown ◽  
Kylie R Dunning ◽  
Melanie Sutton-McDowall ◽  
Robert B Gilchrist ◽  
Jeremy G Thompson ◽  
...  

In vitro maturation (IVM) offers significant benefits for human infertility treatment and animal breeding, but this potential is yet to be fully realised due to reduced oocyte developmental competence in comparison with in vivo matured oocytes. Cumulus cells occupy an essential position in determining oocyte developmental competence. Here we have examined the areas of deficient gene expression, as determined within microarrays primarily from cumulus cells of mouse COCs, but also other species, between in vivo matured and in vitro matured oocytes. By retrospectively analysing the literature, directed by focussing on downregulated genes, we provide an insight as to why the in vitro cumulus cells fail to support full oocyte potential and dissect molecular pathways that have important roles in oocyte competence. We conclude that the roles of epidermal growth factor signalling, the expanded extracellular matrix, cumulus cell metabolism and the immune system are critical deficiencies in cumulus cells of IVM COCs.


2010 ◽  
Vol 22 (9) ◽  
pp. 64
Author(s):  
K. R. Dunning ◽  
L. N. Watson ◽  
J. G. Thompson ◽  
R. L. Robker ◽  
D. L. Russell

Cumulus matrix genes are positively correlated with oocyte competence [1]. Formation of the expanded cumulus matrix during oocyte maturation is well described; however its function remains elusive. We investigated whether cumulus matrix acts as a molecular filter, based on recognised filtration properties of analogous matrices. We found that cumulus matrix controls metabolite supply to the oocyte and retains prostaglandin E2 (PGE2), which is critical in oocyte maturation. The uptake of fluorescently labelled hydrophilic and hydrophobic metabolites showed that cumulus matrix formation significantly impeded diffusion to the oocyte. Expanded in vivo matured cumulus oocyte complexes (COCs, eCG+hCG16h) resisted uptake of glucose and cholesterol compared to unexpanded (eCG44h, P < 0.05), as assessed by confocal microscopy and spatial quantitation of fluorescence (P < 0.05). In vitro maturation (IVM) results in pronounced compositional deficiency of cumulus matrix proteins [2] and poor oocyte quality. Glucose and cholesterol were transported more readily into cumulus cells and the oocyte of IVM COCs (matured in αMEM/5% FCS/50 mIU/mL FSH, 16 h) compared to in vivo matured COCs (P < 0.05 and P = 0.08, respectively). Taking the inverse approach we found that PGE2 synthesised by cumulus cells is retained within the matrix compartment of in vivo matured COCs but IVM COCs did not retain PGE2 and secreted 4.3-fold more into the media. The relationship of retained to secreted PGE2 was significantly higher after in vivo maturation vs IVM COCs (P < 0.0001). This property of the COC matrix reveals a potential mechanism whereby the prostaglandin signal intensifies through a physicochemical mechanism rather than gene regulation. This is the first demonstration that cumulus matrix regulates diffusion toward and secretion from the COC, thus excluding glucose, known to negatively affect oocyte quality, and trapping factors, including PGE2, with critical roles in oocyte maturation and fertilisation. Thus, IVM may reduce oocyte quality due to poor trafficking of metabolites and signalling molecules. (1) McKenzie LJ, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 2004; 19: 2869–2874.(2) Dunning KR, et al. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum Reprod 2007; 22: 2842–2850.


2013 ◽  
Vol 25 (2) ◽  
pp. 426 ◽  
Author(s):  
Karen L. Kind ◽  
Kelly M. Banwell ◽  
Kathryn M. Gebhardt ◽  
Anne Macpherson ◽  
Ashley Gauld ◽  
...  

The IVM of mammalian cumulus–oocyte complexes (COCs) yields reduced oocyte developmental competence compared with oocytes matured in vivo. Altered cumulus cell function during IVM is implicated as one cause for this difference. We have conducted a microarray analysis of cumulus cell mRNA following IVM or in vivo maturation (IVV). Mouse COCs were sourced from ovaries of 21-day-old CBAB6F1 mice 46 h after equine chorionic gonadotrophin (5 IU, i.p.) or from oviducts following treatment with 5 IU eCG (61 h) and 5 IU human chorionic gonadotrophin (13 h). IVM was performed in α-Minimal Essential Medium with 50 mIU FSH for 17 h. Three independent RNA samples were assessed using the Affymetrix Gene Chip Mouse Genome 430 2.0 array (Affymetrix, Santa Clara, CA, USA). In total, 1593 genes were differentially expressed, with 811 genes upregulated and 782 genes downregulated in IVM compared with IVV cumulus cells; selected genes were validated by real-time reverse transcription–polymerase chain reaction (RT-PCR). Surprisingly, haemoglobin α (Hba-a1) was highly expressed in IVV relative to IVM cumulus cells, which was verified by both RT-PCR and western blot analysis. Because haemoglobin regulates O2 and/or nitric oxide availability, we postulate that it may contribute to regulation of these gases during the ovulatory period in vivo. These data will provide a useful resource to determine differences in cumulus cell function that are possibly linked to oocyte competence.


2009 ◽  
Vol 21 (3) ◽  
pp. 451 ◽  
Author(s):  
Dawit Tesfaye ◽  
Nasser Ghanem ◽  
Fiona Carter ◽  
Trudee Fair ◽  
Marc-André Sirard ◽  
...  

Although it is well established that maturation conditions have a clear influence on oocyte developmental competence, it is not known whether this could be due to downstream effects of perturbation of the transcript profile of the oocyte’s adjacent cumulus cells. Therefore, the aim of the present study was to compare the transcript profiles of cumulus cells derived from cumulus–oocyte complexes (COCs) matured in vitro or in vivo. Using a previously validated combined synchronisation and superstimulation protocol, COCs were recovered from beef heifer ovaries just before the expected time of the LH surge and matured in vitro, while in vivo-matured COCs were recovered just before ovulation (20 h after the LH surge). A custom-made cDNA microarray containing 2278 granulosa/cumulus transcripts was used for target and dye-swap hybridisations. In all, 64 genes were differentially expressed between the two groups. Transcript abundance of key genes associated with cumulus expansion (TNFAIP6) and regulation of oocyte maturation (INHBA and FST) were upregulated in in vivo-derived cumulus cells. However, cumulus cells derived from IVM COCs were enriched with genes involved in response to stress (HSPA5 and HSP90AB1). Quantitative real-time polymerase chain reaction confirmed the array results for eight of 10 genes selected for validation. The data presented here reveal that differences in oocyte developmental capacity after maturation in vitro or in vivo are accompanied by distinct differences in transcript abundance of the surrounding cumulus cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Dorota Boruszewska ◽  
Ana Catarina Torres ◽  
Ilona Kowalczyk-Zieba ◽  
Patricia Diniz ◽  
Mariana Batista ◽  
...  

In the present study we examined whether LPA can be synthesized and act duringin vitromaturation of bovine cumulus oocyte complexes (COCs). We found transcription of genes coding for enzymes of LPA synthesis pathway (ATXandPLA2) and of LPA receptors (LPAR 1–4) in bovine oocytes and cumulus cells, followingin vitromaturation. COCs were maturedin vitroin presence or absence of LPA (10−5 M) for 24 h. Supplementation of maturation medium with LPA increased mRNA abundance ofFSTandGDF9in oocytes and decreased mRNA abundance ofCTSsin cumulus cells. Additionally, oocytes stimulated with LPA had higher transcription levels ofBCL2and lower transcription levels ofBAXresulting in the significantly lowerBAX/BCL2ratio. Blastocyst rates on day 7 were similar in the control and the LPA-stimulated COCs. Our study demonstrates for the first time that bovine COCs are a potential source and target of LPA action. We postulate that LPA exerts an autocrine and/or paracrine signaling, through several LPARs, between the oocyte and cumulus cells. LPA supplementation of maturation medium improves COC quality, and although this was not translated into an enhancedin vitrodevelopment until the blastocyst stage, improved oocyte competence may be relevant for subsequentin vivosurvival.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yipengchen Yin ◽  
Yongjing Li ◽  
Sheng Wang ◽  
Ziliang Dong ◽  
Chao Liang ◽  
...  

Abstract Background The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as “self”, evade the surveillance of the immune system, and accumulate to the tumor sites actively. Results Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate—an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. Conclusions These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document