225 TERATOMA FORMATION BY BOVINE EMBRYOS

2007 ◽  
Vol 19 (1) ◽  
pp. 229
Author(s):  
M. L. Lim ◽  
I. Vassiliev ◽  
P. J. Verma

Teratoma formation is commonly used as a model for examining the in vivo differentiation potential of embryonic stem cells. We wanted to investigate the teratoma-forming ability of bovine ES cells; however, there are no reports of teratoma-forming ability of bovine pluripotent cells including pre-implantation embryos. In vivo-produced bovine embryos at stages earlier than Day 14 failed to develop teratomas when transplanted into one of the kidneys of immuno-deficient mice (Anderson et al. 1996 Anim. Reprod. Sci. 45, 231–240), and this prompted questions about the ability of bovine embryos to form teratomas. Bovine oocytes were cultured for 20 to 22 h after aspiration at 39�C (5% CO2/95% air) in TCM-199-bicarbonate medium supplemented with GlutaMax6" (Invitrogen Australia Pty Ltd., Mount Waverley, Victoria, Australia), penicillin/streptomycin, β-mercaptoethanol, 17β-estradiol, fetal calf serum, LH, follicle stimulating hormone, basic fibroblast growth factor, epidermal growth factor, glycine, and l-cysteine. Oocytes were fertilized with IVF media (Cook Australia, Brisbane, Queensland, Australia) and kept for 7 days at 39�C in 5% CO2/95% air to generate blastocysts. The zona pellucida of Day 7 blastocysts was enzymatically removed, and one or two zona-free embryos were injected into each testis of 5-week-old immunodeficient (SCID) mice (CB-17/ICR-Prkdcscid strain; Walter and Eliza Hall Institute, Melbourne, Australia). Eight weeks post-injection, teratomas partially expelled from testes were identified. Histological analysis has confirmed the derivatives of all 3 germ layers in teratomas. In conclusion, we report that Day 7 in vitro-produced embryos can form teratomas when injected into testes of SCID mice.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Weidong Zhu ◽  
Ichiro Shiojima ◽  
Li Zhi ◽  
Hiroyuki Ikeda ◽  
Masashi Yoshida ◽  
...  

Insulin-like growth factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the effects of IGFBPs appear to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. In this study we demonstrate that IGFBP-4 is a novel cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation of P19CL6 embryonal carcinoma cells and embryonic stem (ES) cells in vitro. Conversely, siRNA-mediated knockdown of IGFBP-4 in P19CL6 cells or ES cells attenuated cardiomyocyte differentiation, and morpholino-mediated knockdown of IGFBP-4 in Xenopus embryos resulted in severe cardiac defects and complete absence of the heart in extreme cases. We also demonstrate that the cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signaling. IGFBP-4 physically interacted with a Wnt receptor Frizzled 8 (Frz8) and a Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Moreover, the cardiogenic defects induced by IGFBP-4 knockdown both in vitro and in vivo was rescued by simultaneous inhibition of canonical Wnt signaling. Thus, IGFBP-4 is an inhibitor of the canonical Wnt signaling, and Wnt inhibition by IGFBP-4 is required for cardiogenesis. The present study provides a molecular link between IGF signaling and Wnt signaling, and suggests that IGFBP-4 may be a novel therapeutic target for heart diseases.


2004 ◽  
Vol 379 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Anouchka SKOUDY ◽  
Meritxell ROVIRA ◽  
Pierre SAVATIER ◽  
Franz MARTIN ◽  
Trinidad LEÓN-QUINTO ◽  
...  

Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor β, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation.


Author(s):  
Chih-Yi Yang ◽  
Rita Jui-Hsien Lu ◽  
Ming-Kang Lee ◽  
Felix Shih-Hsian Hsiao ◽  
Ya-Ping Yen ◽  
...  

Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S Tielens ◽  
B Verhasselt ◽  
J Liu ◽  
M Dhont ◽  
J Van Der Elst ◽  
...  

Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Sincein vitroculture may influence Oct-4 expression, we investigated to what extent blastocysts culturedin vitrofrom the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We comparedin vivowithin vitroderived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells’ differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of thein vitroderived blastocysts, 17% gave rise to ES cells vs 38% of thein vivoblastocysts. Six-day old outgrowths fromin vivodeveloped blastocysts expressed Oct-4 in 55% of the cases vs 31% of thein vitroderived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collectedin vivoblastocysts compared toin vitrocultured blastocysts.In vitrocultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level thanin vivoblastocysts.


2021 ◽  
Author(s):  
Natalia López-Anguita ◽  
Seher Ipek Gassaloglu ◽  
Maximilian Stötzel ◽  
Marina Typou ◽  
Iiris Virta ◽  
...  

The cellular microenvironment together with intrinsic regulators shapes stem cell identity and differentiation capacity. Mammalian early embryos are exposed to hypoxia in vivo and appear to benefit from hypoxic culture in vitro. Yet, components of the hypoxia response and how their interplay impacts stem cell transcriptional networks and lineage choices remain poorly understood. Here we investigated the molecular effects of acute and prolonged hypoxia on distinct embryonic and extraembryonic stem cell types as well as the functional impact on differentiation potential. We find a temporal and cell type-specific transcriptional response including an early primitive streak signature in hypoxic embryonic stem (ES) cells. Using a 3D gastruloid differentiation model, we show that hypoxia-induced T expression enables symmetry breaking and axial elongation in the absence of exogenous WNT activation. Importantly, hypoxia also modulates T levels in conventional gastruloids and enhances representation of endodermal and neural markers. Mechanistically, we identify Hif1α as a central factor that mediates the transcriptional response to hypoxia in balance with epigenetic and metabolic rewiring. Our findings directly link the microenvironment to stem cell function and provide a rationale supportive of applying physiological conditions in models of embryo development.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mohsin Khan ◽  
Suresh K Verma ◽  
Alexander R Mackie ◽  
Erin Vaughan ◽  
Srikanth Garikipati ◽  
...  

Rationale: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to ethical concerns, lack of autologous donors and teratoma formation. Recently, it has been observed that beneficial effects of stem cells are mediated by exosomes secreted out under various physiological conditions. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective: Determine the effect of ESC derived exosomes for cardiac repair and modulation of CPCs functions in the heart following myocardial infarction. Methods and Results: Exosomes were isolated from murine ESCs (mES Ex) or embryonic fibroblasts (MEFs) by ultracentrifugation and verified by Flotillin-1 immunoblot analysis. Induction of pluripotent markers, survival and in vitro tube formation was enhanced in target cells receiving ESC exosomes indicating therapeutic potential of mES Ex. mES Ex administration resulted in enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex mediated considerable enhancement of cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 4 weeks after mES Ex transfer. miRNA Array analysis of ESC and MEF exosomes revealed significantly high expression of miR290-295 cluster in the ESC exosomes compared to MEF exosomes. The underlying beneficial effect of mES Ex was tied to delivery of ESC miR-294 to the heart and in particular CPCs thereby promoting CPC survival and proliferation as analyzed by FACS based cell death analysis and CyQuant assay respectively. Interestingly, enhanced G1/S transition was observed in CPCs treated with miR-294 in conjunction with significant reduction of G1 phase. Conclusion: In conclusion, mES Ex provide a novel cell free system for cardiac regeneration with the ability to modulate both cardiomyocyte and CPC based repair programs in the heart thereby avoiding the risk of teratoma formation associated with ESCs.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1931-1941 ◽  
Author(s):  
P. Faloon ◽  
E. Arentson ◽  
A. Kazarov ◽  
C.X. Deng ◽  
C. Porcher ◽  
...  

Recently identified BLast Colony Forming Cells (BL-CFCs) from in vitro differentiated embryonic stem (ES) cells represent the common progenitor of hematopoietic and endothelial cells, the hemangioblast. Access to this initial cell population committed to the hematopoietic lineage provides a unique opportunity to characterize hematopoietic commitment events. Here, we show that BL-CFC expresses the receptor tyrosine kinase, Flk1, and thus we took advantage of the BL-CFC assay, as well as fluorescent activated cell sorter (FACS) analysis for Flk1(+) cells to determine quantitatively if mesoderm-inducing factors promote hematopoietic lineage development. Moreover, we have analyzed ES lines carrying targeted mutations for fibroblast growth factor receptor-1 (fgfr1), a receptor for basic fibroblast growth factor (bFGF), as well as scl, a transcription factor, for their potential to generate BL-CFCs and Flk1(+) cells, to further define events leading to hemangioblast development. Our data suggest that bFGF-mediated signaling is critical for the proliferation of the hemangioblast and that cells expressing both Flk1 and SCL may represent the hemangioblast.


2005 ◽  
Vol 17 (8) ◽  
pp. 751 ◽  
Author(s):  
Mona E. Pedersen ◽  
Øzen Banu Øzdas ◽  
Wenche Farstad ◽  
Aage Tverdal ◽  
Ingrid Olsaker

In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.


2002 ◽  
Vol 22 (10) ◽  
pp. 3509-3517 ◽  
Author(s):  
Hitoshi Okada ◽  
Woong-Kyung Suh ◽  
Jianping Jin ◽  
Minna Woo ◽  
Chunying Du ◽  
...  

ABSTRACT The mitochondrial proapoptotic protein Smac/DIABLO has recently been shown to potentiate apoptosis by counteracting the antiapoptotic function of the inhibitor of apoptosis proteins (IAPs). In response to apoptotic stimuli, Smac is released into the cytosol and promotes caspase activation by binding to IAPs, thereby blocking their function. These observations have suggested that Smac is a new regulator of apoptosis. To better understand the physiological function of Smac in normal cells, we generated Smac-deficient (Smac−/− ) mice by using homologous recombination in embryonic stem (ES) cells. Smac−/− mice were viable, grew, and matured normally and did not show any histological abnormalities. Although the cleavage in vitro of procaspase-3 was inhibited in lysates of Smac−/− cells, all types of cultured Smac−/− cells tested responded normally to all apoptotic stimuli applied. There were also no detectable differences in Fas-mediated apoptosis in the liver in vivo. Our data strongly suggest the existence of a redundant molecule or molecules capable of compensating for a loss of Smac function.


Sign in / Sign up

Export Citation Format

Share Document