57 NO BENEFICIAL EFFECT OF AGGREGATION ON INTERFERON TAU ACTIVITY IN BOVINE CLONE OUTGROWTHS

2007 ◽  
Vol 19 (1) ◽  
pp. 146
Author(s):  
S. Kurosaka ◽  
A. D. Ealy ◽  
K. J. McLaughlin

Extraembryonic failure is associated with the early developmental failure of bovine somatic cell clones. A pregnancy recognition signal, interferon tau (IFNτ), is a potential marker to qualify trophectoderm cells in ungulates. Aggregation of clone embryos is one of the methods to improve cloning efficiency in mouse (Boiani et al. 2003 EMBO J. 22, 5304–5312). Here, we evaluated the outcome of aggregating bovine clones using the bioactivity of IFNτ produced by clone blastocyst outgrowths. Clone embryos were produced from fibroblasts and cultured in vitro in SOF supplemented with fetal bovine serum at 39�C in an atmosphere of 5% CO2, 5% O2, and 90% N2. Aggregation of embryos was performed at the 8–16-cell stage by removing the zonae pellucidae with 0.5% pronase and placing 2 zona-free embryos into a microwell on the bottom of a culture dish. Embryos were cultured until Days 7–8. For outgrowth culture, blastocysts at Days 7–8 were individually placed on 4-well or 24-well plates containing mitotically inactivated STO feeder layers, and cultured at 37�C under 5% CO2 in air in 1 mL of DMEM with 10% FBS in each well. The medium from each well (1 mL) was collected for analysis and replaced at Day 7, 14, and then every 3 days until 50 days. IFNτ antiviral assay was performed as described previously (Talbot et al. 2000 Biol. Reprod. 62, 235–247). IFNτ activity of outgrowths derived from clone aggregates was compared with those from single clones and IVF embryos. The number of IFNτ-positive outgrowths from single and aggregate IVF embryos decreased gradually until Day 32 and Day 35, respectively. In contrast, positive outgrowths from both single and aggregate clone embryos decreased dramatically before Day 26. While all of the positive IVF outgrowths at Day 35 were still positive at Day 50, the number of positive clone outgrowths decreased after Day 35. At Day 50, 66.7% (4 of 6), 42.9% (3 of 7), 11.8% (2 of 17), and 0% (0 of 18) of outgrowths were positive for IFNτ activity in IVF singles, IVF aggregates, clone singles, and clone aggregates, respectively, consistent with the typical loss of somatic cell clone fetuses during the first trimester and development rates to term. We conclude that IFNτ bioactivity adequately reflected the in vivo development of clones vs. IVF embryos, but that clone–clone aggregation had no quantitative benefit on extended in vitro culture.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Li ◽  
Naixia Ren ◽  
Lele Yang ◽  
Junhao Liu ◽  
Qilai Huang

AbstractCRISPR/Cas9 technology has been widely used for targeted genome modification both in vivo and in vitro. However, an effective method for evaluating genome editing efficiency and screening single-cell clones for desired modification is still lacking. Here, we developed this real time PCR method based on the sensitivity of Taq DNA polymerase to nucleotide mismatch at primer 3′ end during initiating DNA replication. Applications to CRISPR gRNAs targeting EMX1, DYRK1A and HOXB13 genes in Lenti-X 293 T cells exhibited comprehensive advantages. Just in one-round qPCR analysis using genomic DNA from cells underwent CRISPR/Cas9 or BE4 treatments, the genome editing efficiency could be determined accurately and quickly, for indel, HDR as well as base editing. When applied to single-cell clone screening, the genotype of each cell colony could also be determined accurately. This method defined a rigorous and practical way in quantify genome editing events.


2016 ◽  
Vol 28 (2) ◽  
pp. 212
Author(s):  
M. Takayama ◽  
O. Dochi ◽  
K. Imai

In recent years, the use of ovum pick up (OPU) and IVF for embryo production has increased worldwide; however, the conception rate of embryo transfer is lower for OPU-IVF embryos than for in vivo-derived embryos. This study aimed to determine the efficacy of embryo selection by a 3-step observation method by using a micro-well culture dish (Dai Nippon Printing, Tokyo, Japan). In this study, 9 Holstein and 15 Japanese Black cows were used, and the OPU-IVF was conducted from October 2014 to May 2015. The collected cumulus-oocyte complexes (COC) were cultured for 22 h in 25 mM HEPES-buffered TCM-199 supplemented with 5% calf serum (CS) and 0.02 AU mL–1 of FSH. Sperm (at a final concentration of 5 × 106 spermatozoa mL–1) were incubated with COC for 6 h. After insemination, presumptive zygotes were separated from cumulus cells and sperm by pipetting. Then, the presumptive zygotes were cultured for 9 days in CR1aa supplemented with 5% CS by using a micro-well culture dish. Kinetics and morphology were observed at 27, 31, and 55 h post-insemination (hpi). The presumptive zygotes were divided to 3 groups (more than 2 cells, 2 cells, and no cleavage) at 27 and 31 hpi. Then, embryos at the 2-cell stage at 31 hpi were divided into 2 groups: 2-cell with normal cleavage and 2-cell embryos with abnormal cleavage (unequal cleavage, 2-cell with fragments, and 2-cell with protrusion). Subsequently, embryos were classified as 8-cell and more than 8 cell, or less than 8 cell at 55 hpi. The blastocyst rate (BL%) was analysed at 7, 8, and 9 days post IVF. Embryos selected by the 3-step observation method were used for fresh embryo transfer. The data were analysed by chi-squared test. In total, 856 oocytes were collected by OPU and 633 oocytes were cultured, of which 39.7% (263/663) developed to the blastocyst stage. The BL% of 2-cell embryos (72.5%, 116/160) was significantly higher (P < 0.01) than that of no cleavage (47.0%, 117/249) at 27 hpi. The BL% of 2-cell (65.4%, 206/315) and more than 2-cell (53.0%, 35/66) was significantly higher (P < 0.01 and P < 0.05) than that of embryos divided as no cleavage (25.9%, 22/85) at 31 hpi. The BL% was not significantly different between 2-cell with normal cleavage (68.5%, 172/251) and abnormal cleavage (53.1%, 34/64). The BL% of 8-cell and more than 8-cell stage (72.8%, 182/250) was significantly higher (P < 0.01) than that of embryos with less than 8 cells (38.8%, 81/209) at 55 hpi. Overall, 2-cell embryos at 27 hpi, 2-cell embryos with normal cleavage at 31 hpi, and 8-cell and more than 8 cell at 55 hpi showed the highest BL% (82.1%, 78/91). The conception rate was higher for following the selected fresh embryo transfer that was 70.6% (12/17) than average of in vitro fertilization embryos transfer that was 40.0%. These results demonstrate that the 3-step observation method used in this study can be effectively applied for the selection of IVF embryos that have a strong ability to develop into blastocysts and high competence for conception.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1777
Author(s):  
Alla S. Koltsova ◽  
Olga A. Efimova ◽  
Olga V. Malysheva ◽  
Natalia S. Osinovskaya ◽  
Thomas Liehr ◽  
...  

We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.


2004 ◽  
Vol 16 (2) ◽  
pp. 242
Author(s):  
P. Lonergan ◽  
D. Rizos ◽  
A. Gutierrez-Adan ◽  
P.M. Moreira ◽  
B. Pintado ◽  
...  

The objective of this study was to examine the time during the post-fertilization culture period that gene expression patterns of in vitro cultured bovine embryos diverge from those of their in vivo cultured counterparts. Presumptive bovine zygotes were produced by IVM/IVF of immature oocytes collected from the ovaries of slaughtered animals. At approximately 20h post-insemination (hpi), presumptive zygotes were randomly divided into two culture groups, either in vitro in synthetic oviduct fluid or in vivo, and transferred into the ewe oviduct. Embryos were recovered from both systems at approximately 30hpi (2-cell), two (4-cell), three (8-cell), four (16-cell), five (early morula), six (compact morula) or seven (blastocyst) days pi and snap-frozen for the analysis of transcript abundance using real-time PCR. The transcripts studied were interferon-tau, apoptosis regulator box-a (Bax), connexin 43, sarcosine oxidase, glucose transporter 5, mitochondrial Mn-superoxide dismutase, insulin-like growth factor II, and insulin-like growth factor-I receptor, most of which are known from our previous work to be differentially transcribed in blastocysts derived from culture in vitro or in vivo. Analysis was done on pools of 10 embryos. Data were analyzed using one-way repeated measures ANOVA. The relative abundance of the transcripts studied varied throughout the preimplantation period and was strongly influenced by the culture environment. For example, transcripts for interferon-tau were detected from the 8-cell stage onwards in in vitro-cultured embryos but not until the early morula stage in those cultured in vivo. Levels of this transcript increased significantly at the compact morula and blastocyst stages in both groups but were significantly higher (P&lt;0.05) in in vitro-cultured embryos at both stages. mRNA for Bax was not detected before the 8-cell stage in in vitro cultured embryos and not until the 16-cell stage in in vivo cultured embryos. The abundance of this transcript increased significantly thereafter up to the blastocyst stage in both groups. The level of expression was significantly higher (P&lt;0.05) at all stages of development in in vitro-cultured embryos than those cultured in vivo. The relative abundance of Cx43 transcripts decreased in both in vitro- and in vivo-cultured embryos at the 8- to 16-cell stage. Levels remained low thereafter in the in vitro-cultured embryos but significantly increased in those cultured in vivo. Transcript abundance was significantly higher in in vivo cultured embryos from Day 4 onwards with a ten-fold difference presence at the blastocyst stage. Differences also existed for the other transcripts studied. These data demonstrate that changes in transcript abundance in blastocyst stage embryos are in many cases a consequence of perturbed transcription earlier in development. Depending on the transcript, these differences may be evident in as short as 10h of culture.


Zygote ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Yuta Tsuji ◽  
Yoko Kato ◽  
Yukio Tsunoda

SummaryTo facilitate nuclear reprogramming, somatic cells or somatic cell nuclear-transferred (SCNT) oocytes have been treated with the histone deacetylase inhibitor trichostatin A (TSA), or the DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC), to relax epigenetic marks of differentiated somatic cells. TSA-treated SCNT oocytes have increased developmental potential, but the optimal treatment period is unknown. Reduced methylation levels in somatic cells have no positive effect on SCNT oocytes, but the treatment of SCNT embryos with 5-aza-dC has not been investigated. We examined the effect of TSA treatment duration on the developmental potential of mouse SCNT oocytes and the effect of 5-aza-dC treatment on their in vitro and in vivo developmental potential. To determine the effects of TSA treatment duration, nuclear-transferred (NT) oocytes were cultured for 0 to 26 h with 100 nM TSA. SCNT oocytes treated with TSA for 8 to 12 h had the higher rate of development to blastocysts and full-term fetuses were obtained after treatment for 8 to 12 h. When oocytes were treated for 14 h and 26 h, blastocyst rates were significantly decreased and fetuses were not obtained. To examine the effect of 5-aza-dC, 2-cell stage SCNT embryos were cultured with 10 or 100 nM 5-aza-dC for 48 h to the morula stage and transferred. The potential of embryos treated with 5-aza-dC to develop into blastocysts was decreased and no fetuses were obtained after transfer. The findings demonstrated that long-term TSA treatment of SCNT mouse oocytes and treatment with 5-aza-dC inhibit the potential to develop into blastocysts and to fetuses after transfer.


Oncogene ◽  
2021 ◽  
Author(s):  
Xin-Ke Yin ◽  
Yun-Long Wang ◽  
Fei Wang ◽  
Wei-Xing Feng ◽  
Shao-Mei Bai ◽  
...  

AbstractArginine methylation is an important posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs). However, the role of PRMTs in colorectal cancer (CRC) progression is not well understood. Here we report that non-POU domain-containing octamer-binding protein (NONO) is overexpressed in CRC tissue and is a potential marker for poor prognosis in CRC patients. NONO silencing resulted in decreased proliferation, migration, and invasion of CRC cells, whereas overexpression had the opposite effect. In a xenograft model, tumors derived from NONO-deficient CRC cells were smaller than those derived from wild-type (WT) cells, and PRMT1 inhibition blocked CRC xenograft progression. A mass spectrometry analysis indicated that NONO is a substrate of PRMT1. R251 of NONO was asymmetrically dimethylated by PRMT1 in vitro and in vivo. Compared to NONO WT cells, NONO R251K mutant-expressing CRC cells showed reduced proliferation, migration, and invasion, and PRMT1 knockdown or pharmacological inhibition abrogated the malignant phenotype associated with NONO asymmetric dimethylation in both KRAS WT and mutant CRC cells. Compared to adjacent normal tissue, PRMT1 was highly expressed in the CRC zone in clinical specimens, which was correlated with poor overall survival in patients with locally advanced CRC. These results demonstrate that PRMT1-mediated methylation of NONO at R251 promotes CRC growth and metastasis, and suggest that PRMT1 inhibition may be an effective therapeutic strategy for CRC treatment regardless of KRAS mutation status.


1970 ◽  
Vol 131 (6) ◽  
pp. 1261-1270 ◽  
Author(s):  
George C. Saunders ◽  
Douglas Swartzendruber

Cells capable of reacting with sheep erythrocyte (SRBC) antigen to maturate and produce hemolysin appear simultaneously in the bone marrow and spleen of 1-day old Swiss-Webster mice. However, hemolysin-producing cell clones (HPCC) do not result. Complete functional precursor units generally appear in the spleens of mice older than 3 days. In vivo and in vitro data correlate well in this regard. Complete precursor units are not seen in the bone marrow and only very rarely in the thymus. The efficiency of precursor units of neonatal mice when they become functional approximates that of the mature animal when based on the doubling time of plaque-forming cells (PFC). Possible explanations of the initial appearance of incomplete precursor units have been discussed.


1991 ◽  
Vol 3 (5) ◽  
pp. 571 ◽  
Author(s):  
JG Thompson ◽  
AC Simpson ◽  
PA Pugh ◽  
RW Wright ◽  
HR Tervit

Embryos were collected from superovulated donors at various intervals from onset of oestrus, ranging from Day 1.5 to Day 6. In addition, blastocysts obtained from the culture of 1-cell embryos collected in vivo or of oocytes matured and fertilized in vitro were used to assess the effects of in vitro manipulation and culture on glucose utilization. Glycolytic activity was determined by the conversion of [5-3H]glucose to 3H2O, and oxidation of glucose was determined by the conversion of [U-14C]glucose to 14CO2. Glucose utilization increases significantly from the 8-cell stage and during compaction and blastulation. Glucose oxidation was at a relatively low level (5-12% of total utilization) compared with glycolysis. No difference was observed between the glycolytic activity of blastocysts derived from in vivo or in vitro sources. However, glucose oxidation was lower (P less than 0.05) in blastocysts derived from the culture of 1-cell embryos or from oocytes matured and fertilized in vitro. Exogenous tricarboxylic acid cycle substrates (i.e. pyruvate and lactate supplied in the medium) affected the level of glucose oxidation.


1989 ◽  
Vol 108 (2) ◽  
pp. 401-411 ◽  
Author(s):  
J Heuser

Reducing the internal pH of cultured cells by several different protocols that block endocytosis is found to alter the structure of clathrin lattices on the inside of the plasma membrane. Lattices curve inward until they become almost spherical yet remain stubbornly attached to the membrane. Also, the lattices bloom empty "microcages" of clathrin around their edges. Correspondingly, broken-open cells bathed in acidified media demonstrate similar changes in clathrin lattices. Acidification accentuates the normal tendency of lattices to round up in vitro and also stimulates them to nucleate microcage formation from pure solutions of clathrin. On the other hand, several conditions that also inhibit endocytosis have been found to create, instead of unusually curved clathrin lattices with extraneous microcages, a preponderance of unusually flat lattices. These treatments include pH-"clamping" cells at neutrality with nigericin, swelling cells with hypotonic media, and sticking cells to the surface of a culture dish with soluble polylysine. Again, the unusually flat lattices in such cells display a tendency to round up and to nucleate clathrin microcage formation during subsequent in vitro acidification. This indicates that regardless of the initial curvature of clathrin lattices, they all display an ability to grow and increase their curvature in vitro, and this is enhanced by lowering ambient pH. Possibly, clathrin lattice growth and curvature in vivo may also be stimulated by a local drop in pH around clusters of membrane receptors.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i15-i16
Author(s):  
Sachin Kumar ◽  
Antony Michealraj ◽  
Leo Kim ◽  
Jeremy Rich ◽  
Michael Taylor

Abstract Ependymomas are malignant glial tumours that occur throughout the central nervous system. Of the nine distinct molecular subgroups of ependymoma, Posterior Fossa A (PFA), is the most prevalent, occurring in the hindbrain of infants and young children. Lacking highly recurrent somatic mutations, PFAs are thought to be a largely epigenetically driven entity, defined by hypomethylation at the histone 3 lysine 27 residue. Previous transcriptional analysis of PFAs revealed an enrichment of hypoxia signaling genes. Thus, we hypothesized that hypoxic signaling, in combination with a unique metabolic milieu, drive PFA oncogenesis through epigenetic regulation. In this study, we identified that PFA cells control the availability of specific metabolites under hypoxic conditions, resulting in diminished H3K27 trimethylation and increased H3K27 acetylation in vitro and in vivo. Unique to PFA cells, transient exposure to ambient oxygen results in irreversible cellular toxicity. Furthermore, perturbation of key metabolic pathways is sufficient to inhibit growth of PFA primary cultures in vitro. PFA cells sequester s-adenosylmethionine while upregulating EZHIP, a polycomb repressive complex 2 (PRC2) inhibitor, resulting in decreased H3K27 trimethylation. Furthermore, hypoxia fine-tunes the abundance of alpha-ketoglutarate and acetyl-CoA to fuel demethylase and acetyltransferase activity. Paradoxically, a genome-wide CRISPR knockout screen identified the core components of PRC2 as uniquely essential in PFAs. Our findings suggest that PFAs thrive in a narrow “Goldilocks” zone, whereby they must maintain a unique epigenome and deviation to increased or decreased H3K27 trimethylation results in diminished cellular fitness. Previously, we showed that PFAs have a putative cell of origin arising in the first trimester of development. Using single-cell RNAseq and metabolomics, we demonstrate that PFAs resemble the natural metabolic-hypoxic milieu of normal development. Therefore, targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Sign in / Sign up

Export Citation Format

Share Document