Erratum to: 264 EXOGENOUS LINOLENIC ACID IN OOCYTE MATURATION MEDIA PROMOTES NUCLEAR MATURATION AND PARTHENOGENETIC PREIMPLANTATION EMBRYONIC DEVELOPMENT IN THE GOAT

2013 ◽  
Vol 25 (1) ◽  
pp. 280
Author(s):  
A. Veshkini ◽  
A.-A. Khadem ◽  
M. Soleimani ◽  
R. Jahanbin ◽  
M. Salehi ◽  
...  

Dietary intakes of polyunsaturated fatty acids are thought to mediate a wide range of actions in reproductive tissues. This includes the effects on ovarian follicle and corpus luteum functions via improved energy efficiency as well as providing precursors for the synthesis of signalling molecules such as steroids and prostaglandins. An appropriate level of α-linolenic acid (ALA) in the oocyte maturation medium has been shown to induce molecular changes associated with oocyte maturation and embryo developmental competence. In that light, we hypothesised that supplementation of exogenous ALA to maturation media could enhance nuclear maturation and embryonic development in the goat. A preliminary experiment was executed to measure the level of ALA in antral follicles by gas chromatography/mass spectrometry analysis. Our results revealed that the concentration of ALA in follicular fluids ranged from 0.006 to 0.02 mg mL–1 (21.5 to 71.8 µM, with a mean of ~50 µM). To test the effect of ALA on the competence of goat oocytes to complete meiotic maturation to metaphase II and sustain embryonic development, ovaries were obtained from a local abattoir. Cumulus–oocyte complexes were recovered by the slicing method followed by selection of oocytes with a homogenous cytoplasm and at least three layers of compact cumulus cells. The cumulus–oocyte complexes were placed in maturation media supplemented with 50 µM ALA. Oocytes in the control group were incubated in the same maturation medium without ALA. In vitro maturation (IVM) was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24 h. After IVM, several oocytes from the treatment (n = 170) and control (n = 166) groups were stained with Hoechst and were evaluated in relation to their metaphase-II rate. Other groups of oocytes from both the treatment (n = 70) and control (n = 61) groups were subjected to parthenogenetic activation by applying 1 min of exposure to 2.5 µM ionomycin followed by 2 mM 6-DMAP treatment for 3 h. After activation, oocytes were cultured in CR1aa medium for 7 days under the conditions stated above. Four replications were performed. Differences in developmental rates were analysed for significance by one-way ANOVA using SAS version 8.0 (SAS Institute Inc., Cary, NC, USA), considering P < 0.05 to be significant. As a result, supplementation of the maturation media with ALA did not appear to affect cumulus expansion. In contrast, IVM of goat oocytes in the presence of ALA resulted in a significantly higher maturation rate compared with maturation without ALA supplementation (66.4% v. 57.9%). Likewise, addition of ALA to the IVM medium significantly increased the rate of cleavage (60.1% v. 52.4%) and blastocyst formation (22.6% v. 14.9%), calculated from the activated oocytes. Collectively, the results of our study show that supplementation of IVM media with 50 µM ALA promotes nuclear maturation, increases cleavage rate, and results in higher blastocyst rate in goat oocytes after parthenogenetic activation. Thus, providing appropriate levels of ALA in maturation media could have beneficial effects on embryo development and reproductive efficiency in the goat.

2013 ◽  
Vol 25 (3) ◽  
pp. 587
Author(s):  
A. Veshkini ◽  
A.-A. Khadem ◽  
M. Soleimani ◽  
R. Jahanbin ◽  
M. Salehi ◽  
...  

Dietary intakes of polyunsaturated fatty acids are thought to mediate a wide range of actions in reproductive tissues. This includes the effects on ovarian follicle and corpus luteum functions via improved energy efficiency as well as providing precursors for the synthesis of signalling molecules such as steroids and prostaglandins. An appropriate level of α-linolenic acid (ALA) in the oocyte maturation medium has been shown to induce molecular changes associated with oocyte maturation and embryo developmental competence. In that light, we hypothesised that supplementation of exogenous ALA to maturation media could enhance nuclear maturation and embryonic development in the goat. A preliminary experiment was executed to measure the level of ALA in antral follicles by gas chromatography/mass spectrometry analysis. Our results revealed that the concentration of ALA in follicular fluids ranged from 0.006 to 0.02mgmL–1 (21.5 to 71.8µM, with a mean of ~50µM). To test the effect of ALA on the competence of goat oocytes to complete meiotic maturation to metaphase II and sustain embryonic development, ovaries were obtained from a local abattoir. Cumulus–oocyte complexes were recovered by the slicing method followed by selection of oocytes with a homogenous cytoplasm and at least three layers of compact cumulus cells. The cumulus–oocyte complexes were placed in maturation media supplemented with 50µM ALA. Oocytes in the control group were incubated in the same maturation medium without ALA. In vitro maturation (IVM) was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24h. After IVM, several oocytes from the treatment (n=170) and control (n=166) groups were stained with Hoechst and were evaluated in relation to their metaphase-II rate. Other groups of oocytes from both the treatment (n=70) and control (n=61) groups were subjected to parthenogenetic activation by applying 1min of exposure to 2.5µM ionomycin followed by 2mM 6-DMAP treatment for 3h. After activation, oocytes were cultured in CR1aa medium for 7 days under the conditions stated above. Four replications were performed. Differences in developmental rates were analysed for significance by one-way ANOVA using SAS version 8.0 (SAS Institute Inc., Cary, NC, USA), considering P&lt;0.05 to be significant. As a result, supplementation of the maturation media with ALA did not appear to affect cumulus expansion. In contrast, IVM of goat oocytes in the presence of ALA resulted in a significantly higher maturation rate compared with maturation without ALA supplementation (66.4% v. 57.9%). Likewise, addition of ALA to the IVM medium significantly increased the rate of cleavage (60.1% v. 52.4%) and blastocyst formation (22.6% v. 14.9%), calculated from the activated oocytes. Collectively, the results of our study show that supplementation of IVM media with 50µM ALA promotes nuclear maturation, increases cleavage rate, and results in higher blastocyst rate in goat oocytes after parthenogenetic activation. Thus, providing appropriate levels of ALA in maturation media could have beneficial effects on embryo development and reproductive efficiency in the goat.


Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Yongjin Lee ◽  
Hanna Lee ◽  
Joohyeong Lee ◽  
Seung Tae Lee ◽  
Geun-Shik Lee ◽  
...  

Summary This study was conducted to examine whether glucose in maturation medium containing reduced NaCl could improve oocyte maturation and embryonic development in pigs. The base medium was bovine serum albumin-free porcine zygote medium (PZM)-3 containing 10% (v/v) pig follicular fluid (FPZM) or 0.1% (w/v) polyvinyl alcohol (PPZM). Using each medium, the effects of NaCl concentrations (108 and 61.6 mM) and 5.56 mM glucose supplementation (designated as PZM108N, PZM108G, PZM61N, and PZM61G, respectively) were examined using a 2 × 2 factorial arrangement. When oocytes were matured in FPZM, glucose supplementation improved nuclear maturation compared with no supplementation, regardless of the NaCl concentrations. FPZM61G showed a higher blastocyst formation compared with FPZM108N and FPZM108G after parthenogenesis (PA). Blastocyst formations of somatic cell nuclear transfer (SCNT) embryos derived from FPZM61N and FPZM61G were higher compared with those of oocytes from FPZM108N. When oocytes were matured in PPZM, glucose added to PPZM108 and PPZM61 increased nuclear maturation compared with no supplementation. However, glucose added to PPZM108 did not alter embryonic development after PA. Additionally, oocytes matured in PPZM61G showed a higher blastocyst formation compared with those from PPZM61N. In SCNT, blastocyst formation was not influenced by glucose supplementation of PPZM108, but was increased by maturation in glucose-supplemented PPZM61. In embryonic development of in vitro fertilization (IVF), oocytes matured in medium with reduced NaCl and glucose showed significantly higher blastocyst formation compared with those matured in PPZM108G. Our results demonstrated that glucose in maturation medium containing 61.6 mM NaCl increased oocyte maturation and embryonic development after PA, SCNT, and IVF.


2015 ◽  
Vol 27 (1) ◽  
pp. 243
Author(s):  
A. H. Abazari-kia ◽  
A. Mohammadi-Sangcheshmeh ◽  
M. Salehi ◽  
M. Zhandi

Overall efficiency of in vitro embryo production has remained low despite extensive effort to understand the effects of culture conditions, media composition, and supplementation. Brain-derived neurotrophic factor (BDNF), which is a physiologically important neurotrophin, has been used to enhance oocyte maturation in some previous studies (Lee et al. 2007; Zhang et al. 2010). However, the efficacy of BDNF to improve oocyte competence has not been fully established especially in ovine. Therefore, the present study aimed to evaluate the effect of BDNF during in vitro maturation (IVM) on maturation rate, intracellular glutathione (GSH) content, and embryonic development in sheep oocytes. Cumulus-oocyte complexes (COC) were obtained from ovaries of ewes. The COC were placed in maturation medium supplemented with either 10 (IVM-B10) or 100 (IVM-B100) ng mL–1 of BDNF (PeproTech, London, UK). Oocytes in control group were incubated in the same maturation medium without BDNF. The IVM was performed in a humidified atmosphere containing 5% CO2, 5% O2, and 90% N2 at 38.5°C for 24 h. After IVM, several oocytes from the IVM-B10 (n = 110), IVM-B100 (n = 124), and control (n = 110) groups were stained with Hoechst and were evaluated in relation to their metaphase-II rate. To measure GSH content, several oocytes from the IVM-B10 (n = 28), IVM-B100 (n = 33), and control (n = 37) groups were incubated in tyrodes medium containing 10 µM Cell Tracker blue for 30 min and transferred under fluorescence microscope, with digital images analysed by image J software. To evaluate the embryonic development, several oocytes from IVM-B10 (n = 145), IVM-B100 (n = 137), and control (n = 143) groups were subjected to parthenogenetic activation by applying 1 min of exposure to 2.5 µM ionomycin followed by 2 mM 6-DMAP treatment for 3 h. After stimulation, oocytes were cultured in CR1aa medium for 7 days under the conditions stated previously. Four replications were performed. The metaphase-II rate, cleavage, and blastocyst rates were compared by x2 analysis. The GSH content was analysed by one-way ANOVA. A P-value of less than 0.05 was considered significant. The results showed that metaphase-II rate was higher in the IVM-B100 group (88.7%), as compared with the control group (77.3%), but not significant as compared with that in the IVM-B10 group (84.5%). No difference was also found between the IVM-B10 group and control group in terms of the metaphase-II rate. Oocytes in the IVM-B10 group revealed a higher (96.8%) GSH content than both of the IVM-B100 (86.9%) and control (86.3%) groups. There was, however, no difference in the GSH content between the IVM-B100 group and control group. The proportion of cleaved embryos was not different between the groups; however, the blastocyst rate was higher in both the IVM-B10 (37.9%) and IVM-B100 (39.3%) groups compared with the control group (22.4%). Collectively, the results of this study showed that supplementation of IVM media with BDNF promoted nuclear maturation, increased GSH content, and stimulated in vitro embryonic development in ovine.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 741
Author(s):  
Dongjin Oh ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Junchul-David Yoon ◽  
...  

Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.


2021 ◽  
Vol 72 (3) ◽  
pp. 3195
Author(s):  
R ASADPOUR ◽  
F AHMADNEJAD ◽  
L ROSHANGAR ◽  
A SABERIVAND ◽  
A HAJIBEMANI

Triiodothyronine (T3) plays an essential role in different animal species’ embryonic development. The present research was designed to identify the effect of triiodothyronine on the in vitro ovine embryonic development and the expression of apoptotic genes.A total of 436 immature cumulus-oocyte complexes (COCs) were cultured for 24 h in the oocyte maturation medium supplemented with two concentrations of T3 (T-10 and T-100 ng/mL) or without T3(T-0: control group). Oocyte maturation, cleavage, and blastocyst rates were assessed under an inverted microscope as crucial indicators of embryo development.The relative mRNA abundance of BCL-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma-2 (BCL2) were determined at blastocysts (day 8 after IVF on day 0)by quantitative reverse transcription PCR.The data were analyzed by logistic regression using the GLIMMIX procedure followed by Chi-Square, and one-way ANOVA tests. The higher concentration of T3(100 ng/mL) significantly decreased cumulus expansion and blastocyst rate compared to controls (P<0.001). Additionally, a significantly higher expression level of BAX(P<0.001) and a dramatically lower expression level of BCL2 (P<0.01) were detected in the T-100ng/mL group compared to the controls.However, the relative mRNA level of BCL-2 was significantly higher in the T-10 ng/mL group compared to the control group (P<0.01).It appears that the supplementation of ovine oocyte maturation medium with T3 at high concentration (100 ng/mL) suppresses the ratio of blastocyst formation.


2018 ◽  
Vol 30 (1) ◽  
pp. 223
Author(s):  
O. B. Pascottini ◽  
M. Catteeuw ◽  
A. Van Soom ◽  
G. Opsomer

The effect of holding time and temperature during storage of immature bovine oocytes in a commercial embryo holding medium (EHM; Syngro® Ltd., Livingston, United Kingdom) was evaluated. Ovaries were collected at the local slaughterhouse and processed within 2 h. Cumulus-oocyte complexes (COC) were collected and allocated to groups of 60. The COC were held in 1-mL sterile glass osmometer tubes, filled to the top with the EHM to limit the amount of air. Vials were capped and covered with parafilm to ensure a tight seal and prevent leakage. Tubes were stored for 6 h at 4°C, room temperature (RT), or 38.5°C; for 10 h at 4°C and RT; and for 14 h at RT. Next, oocytes were fixed after storage in EHM (immature holding) or fixed after being held in EHM and subsequent 22-h maturation at 38.5°C in 5% CO2 in humidified air (mature holding). Maturation medium consisted of modified bicarbonate-buffered TCM-199 supplemented with gentamycin and epidermal growth factor. During all experiments, a control group was included each time. The control consisted of groups of 60 COC immediately fixed after collection or transferred to maturation medium for 22 h and subsequently fixed. Nuclear maturation of oocytes was assessed after Hoechst 33342 staining, using a 400× magnification fluorescence microscope. A total of 3043 COC were evaluated in 3 replicates. Oocytes maturation stages were classified as (1) oocytes in germinal vesicle stage, (2) oocytes in meiotic progression (diakinesis, metaphase I, or anaphase), (3) matured (telophase I or metaphase II), and (4) degenerated (degraded chromatin). Oocytes remained at the germinal vesicle stage when held in EHM (without subsequent maturation) regardless of holding time and temperature (P > 0.05). When oocytes were held for 6 h and subsequently matured (Table 1), the number of matured oocytes was significantly lower for oocytes held at 38.5°C compared with the other groups (control, RT, and 4°C). When held for 10 h, the oocyte maturation rate was similar between the control and RT groups (P > 0.05), but it was significantly lower in oocytes held at 4°C. Last, when compared with oocytes held at RT for 14 h, the maturation rate was higher in the control group (P < 0.05). To conclude, immature bovine oocytes can be successfully held in EHM at RT for up to 10 h. Storing immature oocytes in EHM can delay oocyte maturation and concomitantly synchronize maturation. Table 1.Kinetics of cumulus-oocyte complex nuclear status after storage in embryo holding medium for different times and temperatures and subsequent 22-h maturation


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2012 ◽  
Vol 24 (1) ◽  
pp. 207 ◽  
Author(s):  
S. S. Kwak ◽  
S. A. Jeong ◽  
Y. B. Jeon ◽  
S. H. Hyun

The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, gene expression in matured oocytes and subsequent embryonic development after parthenogenetic activation (PA) and IVF. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. In experiment 1, a total of 1146 cumulus–oocyte complexes (COC) were divided into 5 groups (0, 0.1, 0.5, 2.0 and 10.0 μM resveratrol). In the nuclear maturation after 44-h IVM, the groups of 0.1, 0.5 and 2.0 μM (83.0, 84.1 and 88.3%, respectively) had no significant difference compared to the control group (84.1%). The group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (P < 0.05). In experiment 2, a total of 300 matured oocytes were examined for the effects of different resveratrol concentrations (0, 0.5, 2.0 and 10.0 μM) on porcine oocyte intracellular GSH and ROS levels. The groups of 0.5 and 2.0 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.3 and 1.3, respectively) compared with the control and 10.0 μM groups (1.0 and 1.0, respectively). The intracellular ROS level of oocytes matured with 2.0 μM resveratrol (0.4) was significantly (P < 0.05) decreased compared to other groups (control: 1.0; 0.5 μM: 0.6; and 10.0 μM: 0.7). In experiment 3, lower expression of apoptosis-related genes (Bax, Caspase-3 and Bak) was observed in matured oocytes treated with 2.0 μM resveratrol when compared with that of the control (P < 0.05). In experiment 4, a total of 728 oocytes were divided into 4 groups (control, 0.5, 2.0 and 10.0 μM) and examined subsequent to embryonic development after PA. Oocytes treated with 2.0 μM resveratrol during IVM had a significantly higher cleavage (CL) rate, blastocyst (BL) formation rate and total cell numbers (TCN) after PA compared with those of the control (2.0 μM: 96.6%, 62.1% and 49.1 vs control: 88.3%, 48.8% and 41.4, respectively) and the 10.0 μM groups (87.3%, 41.4% and 40.9, respectively). Oocytes treated with 0.5 μM resveratrol (87.2%, 50.5% and 48.6, respectively) during IVM had significantly higher TCN, but there were no differences in CL and BL formation rates. In experiment 5, a total of 935 oocytes in 3 groups (control, 2.0 and 10.0 μM resveratrol) were conducted in IVF. The BL formation rate and TCN were significantly higher in the group of 2.0 μM resveratrol (20.5% and 54.0, respectively) than the control (11.0% and 43.4, respectively) and 10.0 μM group (11.7% and 45.0, respectively), but there was no significant difference in CL rate. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH concentration, decreasing the ROS level and decreasing apoptosis-related gene expression during oocyte maturation. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008121), Rural Development Administration, Republic of Korea.


Work ◽  
2021 ◽  
pp. 1-10
Author(s):  
Gholam-Abbas Shirali ◽  
Arman Amiri ◽  
Khalil Taherzadeh Chanani ◽  
Maryam Silavi ◽  
Sanaz Mohipoor ◽  
...  

BACKGROUND: The COVID-19 pandemic has created a wide range of sociocultural pressures on nurses. Resilience is defined as one’s ability to adapt to an unpredictable situation and it can be a factor in accepting an undesirable psychosocial situation. OBJECTIVE: The aim of the present study was to examine resilience in nurses in the face of job stress during the COVID-19 pandemic. METHODS: The study was carried out as a case-control study with participation of 400 nurses as the target group (nurses exposed to COVID-19 patients) and the control group (nurses not exposed to COVID-19 patients). To examine resilience and job stress, Conor and Davidson’s questionnaire and OSIPOW questionnaire were used respectively. RESULTS: The mean scores of job stress and resilience were significantly different between the target and control groups (p <  0.05). So that resilience in the target group was less than that in the control group. In addition, job stress in the target group was higher than that of the control group (p <  0.05). There was a significant and negative correlation between resilience and job stress and the correlation was stronger in the target group (p <  0.05). CONCLUSIONS: Given the high job stress score in the participants and its negative correlation with resilience, there is need to provide the health personnel with efficient preventive and treatment approaches, improve and educate the principles of resilience, improve mental health services system, and introduce programs to control some of demographical factors in job stress such as physical activity, and employment status of nurses.


Zygote ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Mohamed Fathi ◽  
A. Salama ◽  
Magdy R. Badr

SummaryThe aim of the current study was to investigate the effect of caffeine supplementation during in vitro maturation (IVM) for different maturation times on the developmental potential of canine oocytes recovered from ovariohysterectomized bitches. The recovered cumulus–oocytes complexes were in vitro matured for 72 h. Here, 10 mM caffeine was added to the maturation medium for different incubation times (caffeine from 0–72 h maturation, caffeine for the first 24 h of maturation only, caffeine addition from 24 to 48 h maturation time, caffeine addition from 48 to 72 h maturation or in caffeine-free medium, control group). The matured oocytes were in vitro fertilized using frozen–thawed spermatozoa. The presumptive zygotes were in vitro cultured in synthetic oviductal fluid medium for 5 days. The results showed that both maturation and fertilization rates were significantly higher (P ˂ 0.05) using caffeine-treated medium for the first 24 h of maturation compared with the control and other two groups of caffeine treatment (from 24 to 48 h and from 48 to 72 h), whereas use of caffeine-treated medium for a 0–72 h incubation time did not affect these rates (P > 0.05). Interestingly, the matured oocytes in caffeine-supplemented medium for the first 24 h or from 0–72 h showed a significant (P ˂ 0.05) increase in the total number of cleaved embryos compared with the control group. In conclusion, supplementation of the maturation medium with 10 mM caffeine for the first 24 h of maturation or during the whole maturation time (0–72 h) improved nuclear maturation and subsequent embryo development preimplantation following in vitro fertilization.


Sign in / Sign up

Export Citation Format

Share Document