50 BOVINE SPERM DEATH KINETICS: TEMPORAL CHANGES IN PRODUCTION OF REACTIVE OXYGEN SPECIES AND PLASMA MEMBRANE INJURY OF DAIRY AND BEEF FROZEN–THAWED SEMEN

2015 ◽  
Vol 27 (1) ◽  
pp. 118
Author(s):  
M. Ahmad ◽  
N. Ahmad ◽  
M. Anzar

The extent of changes in sperm structure and function affect the success of fertilization ultimately during the pathway to ovum in the female reproductive tract. The success of AI with frozen-thawed semen varies in dairy and beef breeds of bovine because of differed alterations in sperm during transport in female tract after insemination. To our knowledge, no report is available comparing the changes in dairy and beef sperm leading to death in female tract. Therefore, this study was aimed to investigate the changes in motility, generation of reactive oxygen species (superoxide and hydrogen peroxide), and their relation to sperm death [asymmetry (apoptosis) and rupture of plasma membrane] of dairy and beef frozen-thawed semen during incubation at 37°C for 24 h. This incubation was aimed to mimic the environment of female reproductive tract. Frozen dairy semen (n = 4 bulls) was procured from a Canadian breeding station, whereas beef semen was collected from breeding beef bulls (n = 3; 5 replicates), diluted with Tris-based extender (composition was same as used in dairy semen), cooled to +4°C over 90 min, and cryopreserved by programmable freezer using standard rate as used in dairy semen. Two straws per replicate were thawed at 37°C from both types of semen, pooled separately, and incubated at 37°C for 24 h in capped tubes. Each pooled semen sample was evaluated for motility with CASA, superoxide (O2–, and hydrogen peroxide (H2O2) radical using HE/YoPRO and H2DCFDA/PI assay, respectively, and asymmetry of plasma membrane using YoPRO/PI assay through flow cytometric analysis at 0, 2, 4, 6, 12, and 24 h of incubation. The MIXED procedure of SAS (SAS Institute Inc., Cary, NC, USA) was used to analyse the data as 2 × 6 factorial model for 2 types of semen (dairy and beef) and 6 time points using time as repeated measure. A threshold limit of 30% was considered for motility and live sperm to get optimum fertility. Sperm motility remained higher (P < 0.05) than threshold limit till 6 h in dairy (50.95 ± 2.62%) and 2 h in beef semen (30.28 ± 6.95%). Dairy semen possessed more (P < 0.05) nonapoptotic sperm without O2– (HE–/YoPRO–) till 6 h of incubation than beef semen. The increase in apoptotic sperm containing superoxide radical (HE+/YoPRO+) over time was more (P < 0.05) in beef semen till 6 h of incubation. The rise in dead sperm containing H2O2 (H2DCFDA+/PI+) was recorded more in beef than in dairy semen until 6 h of incubation. Live sperm without apoptosis (YoPRO–/PI–) were higher until 24 h in dairy (49.36 ± 4.56%) compared with beef semen (24.89 ± 3.85%), whereas viable sperm with apoptosis (YoPRO+/PI–) were found similar in both types of semen over time. In conclusion, dairy frozen-thawed semen possessed more live sperm without reactive oxygen species (superoxide and hydrogen peroxide) until 6 h of incubation than did beef semen. The decrease in superoxide radical was more in dairy than in beef semen. Dead and apoptotic sperm increased more in beef frozen-thawed semen over time during incubation. This inference suggests performing the insemination late near ovulation with beef frozen-thawed semen because of less viable life than dairy semen.

2021 ◽  
Vol 20 (2) ◽  
pp. 45-52
Author(s):  
Sofoklis Stavros ◽  
Antonios Koutras ◽  
Thomas Ntounis ◽  
Konstantinos Koukoubanis ◽  
Theodoros Papalios ◽  
...  

Oxidative stress may play a role in implantation failure on multiple levels. Oxidative stress is found widely in several biological systems, as well as it acts on various molecular levels with different mechanisms. It has been shown that it is rather the disequilibrium between reactive oxygen species causing oxidative stress and antioxidant mechanisms counteracting their effects, than reactive oxygen species levels themselves. Reactive oxygen species play a role in implantation and fertilisation by acting on different levels of embryo-formation and endometrial changes. Additionally, it is widely abundant in the female reproductive tract including ovaries, oocytes, tubal as well as follicular fluid. Moreover, it has been shown that male fertility is affected by reactive oxygen species by determining sperm quality. Last but not least, oxidative stress may affect IVF indirectly through its actions on peritoneal fluid. As long as research studies on elucidating the development of oxidative stress markers on patients undergoing IVF continue, ever more new possibilities emerge on predicting the pregnancy outcome.


2009 ◽  
Vol 22 (7) ◽  
pp. 868-881 ◽  
Author(s):  
Jeannine Lherminier ◽  
Taline Elmayan ◽  
Jérôme Fromentin ◽  
Khadija Tantaoui Elaraqui ◽  
Simona Vesa ◽  
...  

Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membrane. Comparison of the subcellular localization of ROS in wild-type tobacco and in plants transformed with antisense constructs of NtrbohD revealed that this enzyme is also responsible for the hydrogen peroxide production occurring at the plasma membrane after infiltration of tobacco leaves with cryptogein. Finally, the reactivity of wild-type and transformed plants to the elicitor and their resistance against the pathogenic oomycete Phytophthora parasitica were examined. NtrbohD-mediated hydrogen peroxide production does not seem determinant for either hypersensitive response development or the establishment of acquired resistance but it is most likely involved in the signaling pathways associated with the protection of the plant cell.


Author(s):  
Qian Wu ◽  
Youmei Li ◽  
Ying Li ◽  
Dong Wang ◽  
Ben Zhong Tang

Hydrogen peroxide (H2O2), as one kind of key reactive oxygen species (ROS), is mainly produced endogenously primarily in the mitochondria. The selective monitoring of H2O2 in living cells is of...


2021 ◽  
Author(s):  
Chunning Sun ◽  
Michael Gradzielski

Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation...


Planta ◽  
2014 ◽  
Vol 240 (5) ◽  
pp. 1023-1035 ◽  
Author(s):  
Jiangli Zhang ◽  
Changsheng Chen ◽  
Di Zhang ◽  
Houhua Li ◽  
Pengmin Li ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2018 ◽  
Vol 20 (24) ◽  
pp. 7916-7920 ◽  
Author(s):  
Prerona Bora ◽  
Preeti Chauhan ◽  
Suman Manna ◽  
Harinath Chakrapani

Sign in / Sign up

Export Citation Format

Share Document