Changes in kaolinite, vermiculite, and smectite clays after adsorption by hydroxy-chromium species

Soil Research ◽  
1998 ◽  
Vol 36 (3) ◽  
pp. 423 ◽  
Author(s):  
Cristina Volzone

Kaolinite, vermiculite, and montmorillonites were treated with solutions containing hydroxy-chromium (OH-Cr) species. The OH-Cr solution was prepared by adding 0·2 М NaOH to 0·1 М chromium nitrate solution and allowing the solution to stand at 60°C for 1 day. The samples were characterised by chemical analyses, N2 adsorption-desorption isotherms, and X-ray diffraction. The textural and structural behaviours of kaolinite, vermiculite, and the montmorillonites were analysed in the original samples and after treatment with the polymeric OH-Cr species. The montmorillonites showed higher retention of chromium (19·20%), higher basal spacing (2·06 nm), and higher micropore surface area (276 m2/g) than the vermiculite (3·70%, 1·49 nm, 13 m2/g) and kaolinite (1·15%, 0·73 nm, ~1 m2/g) clays after treatment with the OH-Cr species. In contrast, the external surface area increased from 6 to 9 m2/g for kaolinite and from 18 to 24 m2/g for vermiculite, and decreased from 7 to 4 m2/g for montmorillonite after treatment with the OH-Cr solution. The residual chromium, basal spacing, and texture of the clays after treatment with the OH-Cr species were primarily related to the magnitude of the negative charge originating from the octahedral sheet.

2017 ◽  
Vol 64 (3-4) ◽  
pp. 155-162
Author(s):  
Aleksandra Gorączko ◽  
Andrzej Olchawa

AbstractThe paper presents results of a study on the amount of water associated with the solid phase of the clay water system at the plastic limit. Two model monomineral clays, namely kaolinite, and montmorillonite, were used in the study. The latter was obtained by gravitational sedimentation of Na-bentonite (Wyoming).The calculated mean number of water molecule layers on the external surface of montmorillonite was 14.4, and water in interlayer spaces constituted 0.3 of the water mass at the plastic limit.The number of water layers on the external surface of kaolinite particles was 63, which was related to the higher density of the surface electrical charge of kaolinite compared to that of montmorillonite.The calculations were made on the basis of the external surface area of clays and the basal spacing at the plastic limit measured by an X-ray diffraction test. The external surface area of clays was estimated by measuring sorption at a relative humidity p/p0 = 0.5.


2012 ◽  
Vol 616-618 ◽  
pp. 1797-1800
Author(s):  
Yu Mei Gong ◽  
Qing Liang ◽  
Jing Chuan Song ◽  
Ling Ming Xia

This paper presents the preparation of bimodal crystalline macro-/mesoporous titania powders by using a pluronic polymer (EO20PO70EO20, P123) as a template through a hydrothermal treatment. The as-prepared powders were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscope (TEM). The results reveal that the amount of P123 has a significant effect on the surface area of the mesoporous titania. When the mass ratio of P123:TBOT is 1:14, the crystalline macro-/mesoporous titania has the largest surface area (120.96 m2/g), the average pore diameter of this sample reaches a minimum of 6.67 nm.


1975 ◽  
Vol 40 (310) ◽  
pp. 141-152 ◽  
Author(s):  
G. W. Brindley ◽  
Jefferson V. De Souza

SummaryClay-like, hydrous nickel silicates from Niquelandia, Goias, Brazil, and from Jacupiranga, São Paulo, Brazil, arc examined by X-ray diffraction, chemical analysis, and thermogravimetric methods. The nickel silicates from Niquelandia are ferric iron montmorillonites, with nickel in the octahedral positions and, to a lesser extent, in interlayer positions. The chemical compositions of samples dried at 110°C average (Mg0.15Ni0.08Ca0.015Na0.005) (Fe0.92IIIFe0.025IIAl0.55Mg0.37Ni0.22) (Si3.88Al0.12)O10(OH)2(H2O)0.93. The layer charge originates largely in the octahedral sheet. The cation-exchange capacities average 107 me/100 g clay (110°C). These minerals differ from non-tronites, in which the layer charge originates mainly in the tetrahedral sheets.The nickel silicates from Jacupiranga resemble chlorites, with a non-expanding basal spacing of 14·2-14·3 Å. The better crystalline forms give X-ray data in good agreement with a la polytype structure, which is consistent with their formation by low-temperature processes. Chemical formulae derived on the basis of O10(OH)8 give an average of 5·47 cations in octahedral positions. Thermogravimetric measurements show up to 4% H2O lost between 110 and 500 °C. These results suggest a partial vermiculitization of the interlayer sheets. A new method of calculating a structural formula is developed that gives an interlayer composition of the form R1.75(OH)3.75(H2O)1.14, with (OH + H2O)/R = 2·80, which approaches the ratio for a dioctahedral sheet structure.A comparison of these defect chlorites with available data on schuchardtites shows many similarities; however, schuchardtite is not yet sufficiently well denned for the Jacupiranga chlorites to be given this name.


2014 ◽  
Vol 79 (8) ◽  
pp. 1007-1017 ◽  
Author(s):  
Mozaffar Abdollahifar ◽  
Reza Zamani ◽  
Ehsan Beiygie ◽  
Hosain Nekouei

The micro-mesopores flowerlike ?-Al2O3 nano-architectures have been synthesized by thermal decomposition method using the synthesized AlOOH (boehmite) as precursor. After calcination at 500?C for 5 h, the obtained flowerlike ?-Al2O3 has similar structure like the AlOOH precursor. X-ray diffraction (XRD), FTIR, TG, FESEM and TEM techniques were used to characterize morphology and structure of the synthesized samples. The specific surface area (BET), pore volume and pore-size distribution of the products were determined by N2 adsorption-desorption measurements. The flowerlike ?-Al2O3 showed BET high specific surface area 148 m2 g-1 with total pore volume 0.59 cm3 g-1.


2010 ◽  
Vol 178 ◽  
pp. 314-317 ◽  
Author(s):  
Hong Yan Xu ◽  
Xing Tong Chen ◽  
Ai Hong Guo

Al-pillared rectorites (Al-REC) were synthesized from naturally occurring rectorite through exchange of interlamellar ions with hydroxyalumina polycations. Furthermore, Powder X-ray diffraction (XRD), Nitrogen adsorption-desorption isotherms, and Transmitting electronic microscopy (TEM) were applied in order to study the themal stability and hydrothermal stability of pillared materials. The Al-REC are thermally stable up to 800 °C. X-ray diffractograms of Al-REC calcined at 800 °C show a sharp and intense d001 peak, corresponding to a basal spacing of 2.75nm. In a 100% steam flow under atmospheric pressure at 800 °C for 20h, the characteristic d001 spacing of Al-REC decreases from 2.74 to 2.52nm, the sharp and intense d001 peak is still observed. And micropore area, mesopore volume and micropore volume retain 62, 33 and 67%, respectively, which affirms that this pillared clay has exceptional hydrothermal stability.


2019 ◽  
Vol 27 ◽  
pp. 31-37
Author(s):  
Karna Wijaya ◽  
Akhmad Syoufian ◽  
Ade Fitroturokhmah ◽  
Wega Trisunaryanti ◽  
Dita Adi Saputra ◽  
...  

It has been carried out preparation of Chrom/Nanocomposite ZrO2-Pillared Bentonite catalyst with varying the amount of impregnating precursor at 0 to 3% (w/w). Material characterization of catalyst was carried out using X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Infrared Spectroscopy (IR), Transmission Electron Microscope (TEM), Brunauer, Emmett, Teller (BET) and acidity measurement of ammonia-adsorption method. The results of research showed that pillarization was able to increase the basal spacing, surface area, diameter of pore and total volume of pore in catalyst, however increasing of impregnated Cr metal on bentonite caused the decreasing of basal spacing and surface area of catalyst but it would also caused the increasing amount of acid site. The experimental results showed that the catalyst could convert the castor oil into a liquid phase of 78.80% (w/w) with a biogasoline content of 32,73% (w/w).


2019 ◽  
Vol 44 (1) ◽  
pp. 29-36
Author(s):  
Hua Song ◽  
Xueya Dai ◽  
Nan Jiang ◽  
Zijin Yan ◽  
Tianhan Zhu ◽  
...  

Neodymium (Nd)- or yttrium (Y)- modified bulk Ni2P catalysts (Nd-Ni2P or Y-Ni2P) have been successfully prepared and their catalytic performance in benzofuran hydrodeoxygenation have been investigated. The as-prepared catalysts were characterised by X-ray diffraction, N2 adsorption–desorption, CO uptake and X-ray photoelectron spectroscopy. The addition of Nd or Y, especially Nd, can increase the surface area of the catalysts and promote the formation of smaller and more highly dispersed Ni2P particles. The Nd-Ni2P catalyst showed the highest benzofuran hydrodeoxygenation activity of 95.3% and the O-free products yield of 74.6%, which gives an increase of 25.3% and 35.4% when compared with that found for Ni2P.


2008 ◽  
Vol 15 (03) ◽  
pp. 329-336 ◽  
Author(s):  
YIMIN ZHANG ◽  
SHAOXIAN SONG ◽  
MIN ZHANG ◽  
BIYANG TUO

In this work, a Ti -pillared montmorillonite with high thermal stability has been prepared by using a Na -montmorillonite as the host clay and polyhydroxy-titania ions as the pillaring precursor. The formation of Ti -pillared montmorillonite has been confirmed from the characterizations through X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric–differential scanning calorimeter, and specific surface area analyses. In the preparation of Ti -pillared montmorillonite several parameters, such as the type of solvent in which the synthesis is realized, the ratio of polyhydroxy-titania ions and montmorillonite, the intercalation time, the calcining temperature, and calcining time, were tested to understand their effects on the basal spacing. It was shown that this method could produce a Ti -pillared montmorillonite with the basal spacing of 3.74 nm, specific surface area of 409 m2/g, and mean pore size of 2.94 nm, as well as a high thermal stability up to 900°C.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3371 ◽  
Author(s):  
Svensson ◽  
Grins ◽  
Eklöf ◽  
Eriksson ◽  
Wardecki ◽  
...  

The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energy-dispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, 3.3 molecules of CO2 at 20 C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, 3.8 mmol/g at 20 C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations.


Sign in / Sign up

Export Citation Format

Share Document