scholarly journals Organic amendments increased sweetpotato (Ipomoea batatas L.) yield in a calcareous sandy soil of Samoa

2018 ◽  
Vol 36 (1) ◽  
pp. 36
Author(s):  
Taniela K. Siose ◽  
Danilo F. Guinto ◽  
Mohammed A. Kader

A five-month field experiment was conducted to investigate the effects of organic amendments on yields of two sweetpotato cultivars in a calcareous sandy soil of Samoa. The treatments consisted of three organic amendments; gliricidia, gliricidia + biochar, poultry litter, and a control, and two improved sweetpotato cultivars (IB/PH/03 and IB/PR/13). All amendments were applied at equivalent rate of 100 kg N ha–1 while biochar at 5 t ha–1. Plots were arranged in a RCB design with four replicates. Results showed that all organic amendments significantly increased total storage root and marketable storage root yields, compared to yields of the control. Total marketable root yield was increased by 134, 118, and 294% over control in response to gliricidia, poultry litter, and gliricidia + biochar treatments. The highest yield, yield attributing parameters and nutrient uptake by storage root were recorded in gliricidia + biochar treatment, which appears to synergistically influence crop yield relative to organic amendments applied singly; a potential amendment for improving sweetpotato productivity in sandy calcareous soil. Cultivar IB/PH/03 performed better than IB/PR/13 on all measured crop parameters except for fresh weight of non-marketable root and percent dry matter content showing better potentiality for promotion under similar agro-environmental conditions.

2017 ◽  
Vol 43 (8) ◽  
pp. 1234
Author(s):  
Dao-Bin TANG ◽  
Jian-Gang AN ◽  
Yi DING ◽  
Hui BAI ◽  
Kai ZHANG ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 548-557
Author(s):  
Ernest Baafi ◽  
Mavis Akom ◽  
Adelaide Agyeman ◽  
Cynthia Darko ◽  
Ted Carey

AbstractIncreased sweetpotato utilization has become an important breeding objective recently, with much emphasis on the development of non-sweet sweetpotatoes for income and food security in Ghana. The objective of this study was to evaluate 26 elite non-sweet and less sweet sweetpotato genotypes with regard to their release as commercial varieties using mother–baby trial. The 26 sweetpotato genotypes were tested multilocational on-farm across five ecozones from 2016 to 2017. These genotypes were selected from accelerated breeding scheme carried out from 2010 to 2013. There were no year-by-ecozone-by-genotype and year-by-ecozone interactions. However, ecozone-by-genotype interaction was significant for storage root dry matter, beta-carotene, iron and zinc content. This implies that the relative performance of the genotypes for storage root yield was stable across locations and years. Genotypic differences were found for all the traits and indicated that selection of superior genotypes across ecozone was possible. Storage root yield ranged from 7 t/ha to 39 t/ha, while dry matter content ranged from 34% to 46%. The storage root cooking quality preference was comparable with farmers’ check. Ten superior genotypes were identified for release as commercial varieties based on their staple-preferred taste, higher storage root yield, higher dry matter content, earliness, resistance to the sweetpotato virus, sweetpotato weevil and Alcidodes.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 941-947
Author(s):  
Lauren Lindsey ◽  
Raymon Shange ◽  
Ramble O. Ankumah ◽  
Desmond G. Mortley ◽  
Sangita Karki

Organic fertilization techniques have become an attractive alternative to conventional techniques, but there remains interest in their impact on rhizosphere ecology. This study was aimed at assessing the impacts of various organic fertilizer amendments on storage root yield, chemical, biochemical, and microbial factors in the rhizosphere ecosystem and the bacterial community composition in the rhizosphere ecosystem. Four sweetpotato cultivars (J6/66, NCC-58, TU Purple, and Whatley/Loretan) and four organic fertilizer treatments [poultry litter, Megabloom (fish protein), NPK, and an untreated control] were used in the study. The experiments were conducted as a randomized complete block design with a 4 × 4 factorial treatment arrangement and three replications. Fertilizer treatments were split-applied at the rate of 134–67–67 kg·ha−1 NPK equivalent based on soil test recommendations 1 and 4 weeks after planting as single bands 15 cm from the plants and organic amendments were calculated based on total N content. Rhizosphere soil samples were collected at harvest and analyzed for soil pH, soil organic carbon (SOC), bacterial 16S rDNA, and selected soil enzymes. Organic amendments did not affect storage root yield or percent dry matter but enhanced both the mass and number of US#1 storage roots. Rhizosphere pH varied depending on cultivar and cultivar response varied with pH and ranged from 6.1 to 6.8, whereas SOC was similar regardless of the amendment. The impact of fertilizers was evident as Megabloom (fish protein) treatment suppressed the relative abundance (RA) of nitrifiers (Nitrosococcus and Nitrosomonadaceae). Also, the rhizosphere of ‘Whatley/Loretan’ seemed to have been a beneficial habitat for populations of common nitrogen-fixing bacteria Bradyrhizobium elkanii, and Rhodospirillaceae sp. as their RA increased significantly in the rhizosphere. That bacteria associated with carbon and nitrogen cycling under aerobic conditions were found to be ubiquitous in the rhizosphere of sweetpotato, suggesting that certain amendments positively impacted the populations of nitrogen-cycling bacteria, thus making them a viable alternative to NPK when considering increasing or sustaining yield while promoting long-term soil health.


2021 ◽  
Vol 22 (9) ◽  
pp. 4826
Author(s):  
Yang Gao ◽  
Zhonghou Tang ◽  
Houqiang Xia ◽  
Minfei Sheng ◽  
Ming Liu ◽  
...  

A field experiment was established to study sweet potato growth, starch dynamic accumulation, key enzymes and gene transcription in the sucrose-to-starch conversion and their relationships under six K2O rates using Ningzishu 1 (sensitive to low-K) and Xushu 32 (tolerant to low-K). The results indicated that K application significantly improved the biomass accumulation of plant and storage root, although treatments at high levels of K, i.e., 300–375 kg K2O ha−1, significantly decreased plant biomass and storage root yield. Compared with the no-K treatment, K application enhanced the biomass accumulation of plant and storage root by 3–47% and 13–45%, respectively, through promoting the biomass accumulation rate. Additionally, K application also enhanced the photosynthetic capacity of sweet potato. In this study, low stomatal conductance and net photosynthetic rate (Pn) accompanied with decreased intercellular CO2 concentration were observed in the no-K treatment at 35 DAT, indicating that Pn was reduced mainly due to stomatal limitation; at 55 DAT, reduced Pn in the no-K treatment was caused by non-stomatal factors. Compared with the no-K treatment, the content of sucrose, amylose and amylopectin decreased by 9–34%, 9–23% and 6–19%, respectively, but starch accumulation increased by 11–21% under K supply. The activities of sucrose synthetase (SuSy), adenosine-diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (SSS) and the transcription of Susy, AGP, SSS34 and SSS67 were enhanced by K application and had positive relationships with starch accumulation. Therefore, K application promoted starch accumulation and storage root yield through regulating the activities and genes transcription of SuSy, AGPase and SSS in the sucrose-to-starch conversion.


2021 ◽  
Vol 39 (3) ◽  
pp. 299-304
Author(s):  
Lucimeire Pilon ◽  
Jaqueline S Guedes ◽  
Bruna S Bitencourt ◽  
Raphael Augusto de C Melo ◽  
Larissa PC Vendrame ◽  
...  

ABSTRACT Sweetpotato (Ipomoea batatas) is a root crop grown in many countries. This tuberous root is a source of energy, nutrients, and phytochemicals. In this study, bioactive compounds and physical and physicochemical qualities of sweetpotato genotypes were evaluated. Eight new genotypes of sweetpotato produced by Embrapa Hortaliças (orange-fleshed: MD09026-OF and MD09024-OF; cream-fleshed: MD09011-CF, MD09004-CF, MD10039-CF, and MD10004-CF; yellow-fleshed: MD09017-YF and MD12002-YF) and two cultivars used as controls (Beauregard and Brazlândia Roxa) were evaluated for color, soluble solids, dry matter, phenolic compounds, total carotenoids and β-carotene. Hue angles differed even between those sweetpotatoes with the same flesh color. The orange-fleshed genotypes MD09024-OF, MD09026-OF, and Beauregard, had the lowest L*, showing to be darker than the others. These sweetpotatoes also had the brightest flesh colors with higher C*. The orange-fleshed genotypes MD09026-OF and MD09024-OF were sweeter (10.55oBrix and 9.23oBrix) than Beauregard (5.12oBrix). Brazlândia Roxa had the highest dry matter content (38.05%), followed by the genotypes MD10004-CF, MD09017-YF, MD09026-OF MD10039-CF, and MD09011-CF, which showed similarity, ranging from 32.33% to 29.12%. The highest contents of total carotenoids were found for the orange-fleshed genotypes MD09026-OF (80.06 mg g-1) and MD09024-OF (70.56 mg g-1) and Beauregard (73.12 mg g-1). These same genotypes showed the highest total phenolic compounds (0.815 mg g-1 and 0.686 mg g-1, respectively). MD09026-OF showed the highest content of β-carotene (46.47 mg g-1). MD09026-OF was the most prominent genotype among those evaluated, as it showed the highest total carotenoid, β-carotene, phenolic compounds, and soluble solids content, in addition to a high dry matter content.


2010 ◽  
Vol 10 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Henry Fred Ojulong ◽  
Maryke Tine Labuschagne ◽  
Liezel Herselman ◽  
Martin Fregene

The cassava breeding scheme currently used is long, because initial stages concentrate mainly on improving yield, with root quality selection following later. To shorten the scheme, yield and root quality should be selected simultaneously, starting at the seedling nursery. In this study, a nursery comprising of eight cassava families and 1885 seedlings developed from parents adapted to three major agro-ecologies, were evaluated for yield related traits in Colombia. Percentage dry matter content (DMC) and harvest index produced similar ranking of the parents. Tuber yield, weight, and number showed potential of increasing yield through conventional breeding. A selection index including fresh root yield, percentage DMC, root weight and roots per plant, with heavier weights being assigned to root weight and roots per plant, should be used.


Author(s):  
Getu Beyene ◽  
Raj Deepika Chauhan ◽  
Jackson Gehan ◽  
Dimuth Siritunga ◽  
Nigel Taylor

Abstract Key message Among the five cassava isoforms (MeAPL1–MeAPL5), MeAPL3 is responsible for determining storage root starch content. Degree of storage root postharvest physiological deterioration (PPD) is directly correlated with starch content. Abstract AGPase is heterotetramer composed of two small and two large subunits each coded by small gene families in higher plants. Studies in cassava (Manihot esculenta) identified and characterized five isoforms of Manihot esculenta ADP-glucose pyrophosphorylase large subunit (MeAPL1–MeAPL5) and employed virus induced gene silencing (VIGS) to show that MeAPL3 is the key isoform responsible for starch and dry matter accumulation in cassava storage roots. Silencing of MeAPL3 in cassava through stable transgenic lines resulted in plants displaying significant reduction in storage root starch and dry matter content (DMC) and induced a distinct phenotype associated with increased petiole/stem angle, resulting in a droopy leaf phenotype. Plants with reduced starch and DMC also displayed significantly reduced or no postharvest physiological deterioration (PPD) compared to controls and lines with high DMC and starch content. This provides strong evidence for direct relationships between starch/dry matter content and its role in PPD and canopy architecture traits in cassava.


2007 ◽  
Vol 132 (5) ◽  
pp. 729-738 ◽  
Author(s):  
Lucia E. Villavicencio ◽  
Sylvia M. Blankenship ◽  
G. Craig Yencho ◽  
Judith F. Thomas ◽  
C. David Raper

Sweetpotatoes [Ipomoea batatas (L.) Lam.] often experience significant epidermal loss during harvest and postharvest handling. Skin loss causes weight loss, shriveling of the root surface, and increased susceptibility to pathogen attack as well as poor appearance. It is not known if sweetpotatoes show variation in skin adhesion, cell wall enzyme activity and components, and growth parameters with growth temperature or if skin loss can be explained on the basis of variation among these variables. Skin adhesion, polygalacturonase (PG) and pectin methylesterase (PME) activity, lignin, anthocyanin, and dry matter content were measured in the periderm of ‘Beauregard’ roots grown at various temperatures under controlled conditions. Biomass dry matter content, storage root yield, root length, diameter, and weight at harvest were recorded. Histochemical and anatomical characteristics of periderm of roots were studied. Growth temperature affected skin adhesion, PG and PME activity, periderm and biomass dry matter content, yield, storage root weight, and diameter. High temperatures (34/31 °C day/night) yielded roots that were smaller and more resistant to skin loss. These roots had a periderm composed of more cell layers with a lower dry matter content than roots grown at lower and intermediate temperatures (27/24 °C and 20/17 °C). In cured roots, the correlation between skin adhesion and PG activity was negative (r = 0.544, P = 0.0006) and positive between skin adhesion and PME (r = 0.319, P = 0.05). For most of the variables studied, the interaction between growing temperature and curing was significant. Curing improved skin adhesion, but the effect of curing was dependent on the root growth temperature. The periderm of roots grown at higher temperatures was thicker and had more layers than that of roots grown at lower temperatures. Histochemical studies of the periderm of sweetpotato showed that the anatomical and structural composition of the cell walls differ depending on growth temperature.


2021 ◽  
Author(s):  
Ravena Rocha Bessa Carvalho ◽  
Massaine Bandeira e Sousa ◽  
Luciana Alves de Oliveira ◽  
Eder Jorge Oliveira

Abstract Increasing carotenoid content and improving other root quality traits has been the focus of cassava biofortification. This study aimed to i) evaluate the genetic variability for total carotenoid content (TCC), as well as for root yield and root quality attributes; ii) estimate potentially useful correlations for selection; and iii) select parents for breeding and estimate the genetic gain. Data from 2011 to 2020 of 265 cassava genotypes with cream and yellow roots were analyzed for dry matter content (DMC), shoot yield, fresh root yield (FRY), dry root yield (DRY), harvest index, average number of roots per plant, starch content, root pulp color, cyanogenic compounds, and TCC. The best linear unbiased predictions showed great phenotypic variation for all traits. Six distinct groups were formed for productive characteristics of root quality, mainly TCC, DMC and FRY. Only TCC showed high broad-sense heritability (\({h}^{2}\)= 0.72), while the other traits had low to medium magnitude (0.21 ≤ \({h}^{2}\) ≤ 0.60). TCC was strongly correlated with pulp color (r = 0.70), but null significance for DMC. The network analysis identified a clear separation between the agronomic and quality attributes of cassava roots. The selection of the 30 genotypes for recombination in the breeding program has the potential to raise TCC by 37.1% and reduce the cyanogenic compounds content by 19.4%, in addition to increasing FRY and DRY by 37.7% and 40.2%, respectively. This is the first consolidated study on the potential of germplasm for the development biofortified cassava varieties in Brazil.


Sign in / Sign up

Export Citation Format

Share Document