scholarly journals Hydrolyzed Organic Fish Fertilizer and Poultry Litter Influence Yield and Rhizosphere Ecology of Sweetpotato

HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 941-947
Author(s):  
Lauren Lindsey ◽  
Raymon Shange ◽  
Ramble O. Ankumah ◽  
Desmond G. Mortley ◽  
Sangita Karki

Organic fertilization techniques have become an attractive alternative to conventional techniques, but there remains interest in their impact on rhizosphere ecology. This study was aimed at assessing the impacts of various organic fertilizer amendments on storage root yield, chemical, biochemical, and microbial factors in the rhizosphere ecosystem and the bacterial community composition in the rhizosphere ecosystem. Four sweetpotato cultivars (J6/66, NCC-58, TU Purple, and Whatley/Loretan) and four organic fertilizer treatments [poultry litter, Megabloom (fish protein), NPK, and an untreated control] were used in the study. The experiments were conducted as a randomized complete block design with a 4 × 4 factorial treatment arrangement and three replications. Fertilizer treatments were split-applied at the rate of 134–67–67 kg·ha−1 NPK equivalent based on soil test recommendations 1 and 4 weeks after planting as single bands 15 cm from the plants and organic amendments were calculated based on total N content. Rhizosphere soil samples were collected at harvest and analyzed for soil pH, soil organic carbon (SOC), bacterial 16S rDNA, and selected soil enzymes. Organic amendments did not affect storage root yield or percent dry matter but enhanced both the mass and number of US#1 storage roots. Rhizosphere pH varied depending on cultivar and cultivar response varied with pH and ranged from 6.1 to 6.8, whereas SOC was similar regardless of the amendment. The impact of fertilizers was evident as Megabloom (fish protein) treatment suppressed the relative abundance (RA) of nitrifiers (Nitrosococcus and Nitrosomonadaceae). Also, the rhizosphere of ‘Whatley/Loretan’ seemed to have been a beneficial habitat for populations of common nitrogen-fixing bacteria Bradyrhizobium elkanii, and Rhodospirillaceae sp. as their RA increased significantly in the rhizosphere. That bacteria associated with carbon and nitrogen cycling under aerobic conditions were found to be ubiquitous in the rhizosphere of sweetpotato, suggesting that certain amendments positively impacted the populations of nitrogen-cycling bacteria, thus making them a viable alternative to NPK when considering increasing or sustaining yield while promoting long-term soil health.

HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1479-1481
Author(s):  
Desmond G. Mortley ◽  
Douglas R. Hileman ◽  
Conrad K. Bonsi ◽  
Walter A. Hill ◽  
Carlton E. Morris

Two sweetpotato [Ipomoea batatas (L.) Lam] genotypes (TU-82-155 and NCC-58) were grown hydroponically and subjected to a temporary loss of lighting in the form of 14 days of prolonged darkness compared with a lighted control under standard daily light periods to determine the impact on growth responses and storage root yield. Vine cuttings of both genotypes were grown in rectangular channels. At 65 days after planting, lights were turned off in the treatment chambers and replaced by a single incandescent lamp, providing between 7 and 10 µmol·m−2·s−1 photosynthetic photon flux (PPF) for 18 hours, and the temperature lowered from 28/22 °C light/dark, to a constant 20 °C. Plants remained under these conditions for 14 days after which the original light level was restored. Growth chamber conditions predark included, a PPF mean provided by 400-W metal halide lamps, of 600 ± 25 µmol·m−2·s−1, an 18-hour light/6-hour dark cycle and a relative humidity of 70% ± 5%. The nutrient solution used was a modified half-Hoagland with pH and electrical conductivity (EC) maintained between 5.5–6.0 and 1000–1200 μS·cm−1, respectively, and was adjusted weekly. Storage root number and fresh weight were similar regardless of treatments. Plants exposed to prolonged darkness produced 10.5% and 25% lower fibrous root fresh and dry mass, respectively, but similar foliage yield and harvest index (HI). ‘NCC-58’ produced an average of 31% greater storage root yield than that of ‘TU-82-155’ but the number of storage roots as well as % dry matter (%DM) were similar. ‘NCC-58’ also produced 31% greater fibrous root dry weight, whereas ‘TU-82-155’ produced a 44% greater HI. The significant interaction between prolonged darkness and cultivars for %DM of the storage roots showed that DM for ‘TU-82-155’ was 18.4% under prolonged darkness and 17.9% in the light. That for ‘NCC-58’ was 16.4% under prolonged darkness compared with 19.4% (14.8% greater) for plants that were not subjected to prolonged darkness. The evidence that there were no adverse impacts on storage root yield following the exposure to prolonged darkness suggests that the detrimental effects were below the detectable limits for these cultivars in response to the short perturbation in the available light and that sweetpotatoes would be hardy under short-term failure situations.


2018 ◽  
Vol 36 (1) ◽  
pp. 36
Author(s):  
Taniela K. Siose ◽  
Danilo F. Guinto ◽  
Mohammed A. Kader

A five-month field experiment was conducted to investigate the effects of organic amendments on yields of two sweetpotato cultivars in a calcareous sandy soil of Samoa. The treatments consisted of three organic amendments; gliricidia, gliricidia + biochar, poultry litter, and a control, and two improved sweetpotato cultivars (IB/PH/03 and IB/PR/13). All amendments were applied at equivalent rate of 100 kg N ha–1 while biochar at 5 t ha–1. Plots were arranged in a RCB design with four replicates. Results showed that all organic amendments significantly increased total storage root and marketable storage root yields, compared to yields of the control. Total marketable root yield was increased by 134, 118, and 294% over control in response to gliricidia, poultry litter, and gliricidia + biochar treatments. The highest yield, yield attributing parameters and nutrient uptake by storage root were recorded in gliricidia + biochar treatment, which appears to synergistically influence crop yield relative to organic amendments applied singly; a potential amendment for improving sweetpotato productivity in sandy calcareous soil. Cultivar IB/PH/03 performed better than IB/PR/13 on all measured crop parameters except for fresh weight of non-marketable root and percent dry matter content showing better potentiality for promotion under similar agro-environmental conditions.


2018 ◽  
Vol 3 (1) ◽  
pp. 319-325
Author(s):  
Daniel A. Akansake ◽  
Putri E. Abidin ◽  
E. E. Carey

Abstract This study estimated the amount of loss in storage roots caused by various levels of damage caused by sweetpotato weevils (Cylas spp). Seven varieties of sweetpotato (Ipomoea batatas L. (Lam)) were evaluated in three production sites in northern Ghana for two years (2014 and 2015). Yield data for each experimental plot were collected. A regression analysis was carried out using the generalized linear model approach. In the study, nonmarketable roots were classified as all undersized roots (<100g) and spoilt roots due to weevil, millipede, and soft rot. The results indicated weevil damage as the only significant predictor of nonmarketable yield at 5% level of significance. From the study, the average values for total root yield, marketable root yield, and nonmarketable root yield were 9.39, 6.71, and 2.67 ton/ha respectively. The minimum weevil damage (score 2) resulted in a yield loss of 2 ton/ha which represents 8.3% while severe damage at score 9 could cause a loss of 7.43 ton/ha of storage roots representing 31% of the attainable yield of sweetpotato. Weevil susceptibility needs to be treated as a serious trait when evaluating sweetpotato genotypes to be released as varieties.


2018 ◽  
Vol 3 (1) ◽  
pp. 644-651
Author(s):  
A.O. Adekiya ◽  
C.M. Aboyeji ◽  
T.M. Agbede ◽  
O. Dunsin ◽  
O.T.V. Adebiyi

Abstract Micro-nutrients especially zinc can not only increase the yield of sweet potato but can also improve the quality of tubers. Hence, experiments were carried out in 2015 and 2016 cropping seasons to determine the impact of various levels of ZnSO4 fertilizer on soil chemical properties, foliage and storage root yields and proximate qualities of sweet potato (Ipomoea batatas L.). The experiments consisted of 5 levels (0, 5, 10, 15 and 20 kg ha-1) of ZnSO4 fertilizer. These were arranged in a randomized complete block design and replicated three times. ZnSO4 increased (with the exception of P) soil chemical properties compared with the control. N, K, Ca, Mg and Zn were increased up to the 20 kg ha-1 ZnSO4 level in both years. ZnSO4 reduced P concentrations in soil as the level increased. For sweet potato performance, 5 kg ha-1 ZnSO4 fertilizer had the highest values of foliage yield (vine length and vine weight) and storage root yield. Using the mean of the two years and compared with the control, ZnSO4 fertilizer at 5 kg ha-1 increased storage root yield of sweet potato by 17.4%. On fitting the mean storage root yield data of the two years with a cubic equation, the optimum rate of Zn for sweet potato was found to be 3.9 kg ha-1 to achieve the maximum sweet potato yield. In this study, relative to the control, ZnSO4 fertilizer increased moisture and decreased the fibre contents of sweet potato. There were no consistent patterns of variation between the 5, 10, 15 and 20 kg ha-1 ZnSO4 treatments for proximate qualities except that the highest values of fat, protein, carbohydrate and ash was at 5 kg ha-1 ZnSO4.


2011 ◽  
Vol 64 ◽  
pp. 160-167 ◽  
Author(s):  
S.L. Lewthwaite ◽  
P.J. Fletcher ◽  
J.D. Fletcher ◽  
C.M. Triggs

The sweetpotato (Ipomoea batatas) crop is propagated vegetatively by field transplanting adventitious sprouts produced on storage roots retained from the previous seasons harvest This system promotes the persistence and accumulation of both viruses and spontaneous mutations A phenomenon known as cultivar decline has been reported internationally where the root yield and appearance of commercially grown sweetpotato cultivars appear to deteriorate over successive growing seasons The relative contributions of virus infection and plant mutation to cultivar decline are uncertain but both issues are addressed through the use of virustested tissue cultured propagation systems This study assessed the degree of decline for cultivars Owairaka Red and Beauregard within the New Zealand biophysical production environment Storage root yield decreased significantly with increasing field exposure for both cultivars (P


2017 ◽  
Vol 54 (3) ◽  
pp. 336-348
Author(s):  
MAPITA PRASITSARN ◽  
ANAN POLTHANEE ◽  
VIDHAYA TRELO-GES ◽  
ROBERT W. SIMMONS

SUMMARYBud removal of the cuttings at underground level has been claimed by cassava growers in Thailand as a method to increase cassava yield. This practise should be tested experimentally to explain the reason for yield increase. The objective of this study was to investigate the effects of bud removal and cutting length on storage root yield and starch content of three cassava varieties. Field experiment was conducted in a split–split plot design with four replications in 2010 and 2011, under rainfed conditions. Three cassava varieties (KU50, RY9 and HB60) were assigned as main plot. Two cutting lengths (15 cm and 30 cm) were assigned as sub plots, and two treatments of buds (buds cut and not cut) were assigned as sub–sub plots. The buds on the cuttings that were inserted into the soil were removed. In 2010, the plants from 15-cm long cuttings subjected to bud removal had higher fresh storage root yield (88.4 Mg ha−1) than did plants from 30-cm long cuttings subjected to bud removal (75.8 Mg ha−1). Cutting of buds also had higher fresh storage root yield (89.1 Mg ha−1) than did non bud-cutting (75.0 Mg ha−1). KU50 had the highest fresh storage root yield (91.4 Mg ha−1), dry root yield (48.4 Mg ha−1) and starch yield (20.1 Mg ha−1). Cutting length of 15 cm had higher starch concentration in storage roots (25.6%) than did cutting length of 30 cm (24.2%). HB60 had the highest starch concentration (27.0%) among cassava varieties tested. The data in 2011 were similar to the data in 2010. The responses of varieties to bud removal and cutting length are discussed.


2021 ◽  
Vol 11 (1) ◽  
pp. 013-021
Author(s):  
Sakhile Sipho Dlamini ◽  
Mzwandile Petros Mabuza ◽  
Bonginkhosi Edward Dlamini

Sweet potato (Ipomoea batatas L.) is the most grown storage root crop in Eswatini. However, its storage root yield is low among smallholder farmers partly due to use of inappropriate varieties and agronomic practices such as planting method. Thus, a field experiment was conducted at the University of Eswatini, Faculty of Agriculture, Luyengo, during 2019/2020 cropping season to determine the effects of planting method on growth and yield of the three sweet potato varieties. Two planting methods, namely horizontal and vertical; and three sweet potato varieties, namely Kenya-white, Ligwalagwala and Lamngititi were evaluated in a factorial arrangement in randomized complete block design in three replications. Results showed non-significant difference between the planting methods in most growth and yield parameters recorded for the sweet potato varieties. However, the vertical method of planting had relatively higher vine length, number of branches, mass of storage roots and storage root yield than the horizontal method. On the other hand, there were significant (P<0.05) differences among the sweet potato varieties for most of parameters recorded. The sweet potato variety Ligwalagwala had the highest vine length, number of storage roots per plant (6.47), mass of storage roots per plant (1137 g) and storage root yield (12.01 tonnes/ha). Thus, either horizontal or vertical method of planting and variety Ligwalagwala can be used to increase the productivity of sweet potato in the study area.


2019 ◽  
Vol 18 (4) ◽  
pp. 193-201
Author(s):  
Anastasia A. Papadaki ◽  
Kalliopi Ladomenou

Root vegetables have greater risk of metal contamination from compost application to soil than other horticultural crops. Moreover, soil organic amendments pose potential environmental hazards. The objective of the present study was to examine the heavy metal uptake in different tissues (petiole, blade, skin, pulp) of Raphanus sativus exposed to organic amendments doses. The impact of the above materials on heavy metal concentration of the soil and plant development parameters were also evaluated. A pot experiment was established with eight treatments arranged in a randomized complete block design and four replicates. Co-compost of sewage sludge and olive wastes at 100, 200, 300 m3 ha–1, composted olive leaves, olive tree pruning wastes, olive mill pomace and poultry manure at 100, 200 m3 ha–1, commercial liquid organic fertilizer at 50 Kg ha–1 with or without inorganic NPK fertilization and a no fertilizing control, were applied to plants. The results showed that sewage sludge application strongly increased the yield and improved radish size cultivated in silt loam soil. The edible radish part had the lowest Fe, Mn, Cu, Zn, and Cr content, whereas the highest Mn, Cu, Zn, Cr was found in the blade and increased Fe, Ni, Pb were recorded in the skin. Organic treatments gave higher Fe, Mn, Cu, Zn amount in both aerial plant tissues compared to the control soil, while Ni, Pb, Cr of all the radish parts were not affected by treatments. This study suggested that organic amendments application gave low permissible levels of all metal content in radish tissues and increased radish productivity. Therefore, organic materials used herein can be applied for normal plant growth without metal contamination of the plant and the soil.


Agro-Science ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
D.A. Okpara ◽  
D.C. Udeh ◽  
O.K. Akinbo ◽  
O.N. Eke-Okoro ◽  
A.O. Olojede

Investigations were conducted to study the effect of stem portion and number of stakes per stand on crop establishment, growth and yield of cassava variety NR 8082 in Umudike Southeastern Nigeria during the 2016/17 and 2017/18 cropping seasons. In each year, the experiment was laid out as a 3 × 3 factorial, in randomized complete block design with three replications. Treatments consisted of three stem portions of different physiological ages (top, middle and basal) and three numbers of stakes per stand (1, 2 and 3). The middle and basal stem portions significantly increased percent establishment, plant height and leaf area index at 3 months after planting (MAP) but had no effect on number of storage roots per plant. The best stem portion for storage root yield was, however, the top portion which produced the highest yield on average. Number of stakes per stand did not significantly affect stem girth, number of nodes per plant and leaf area index, but the use of 1 stake per stand increased number of storage roots per plant, root weight and storage oot yield in 2017/2018 cropping season. Number of stakes per stand did not significantly influence storage root yield across the two seasons of evaluation. Interactions between stem portion and number of stakes per stand did not significantly affect storage root yield of NR 8082 high cassava variety in both cropping seasons. Based on the findings, the use of 1 stake per stand is recommended for high root yields of NR 8082 cassava variety under conditions of low soil fertility in Umudike, South East Nigeria. Although the top portion enhanced root yield, farmers could use any of the stem portions, since the middle and basal parts gave satisfactory yields and had better establishment than the former.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Phanupong Phoncharoen ◽  
Poramate Banterng ◽  
Nimitr Vorasoot ◽  
Sanun Jogloy ◽  
Piyada Theerakulpisut ◽  
...  

Information on the forking, leaf area index, and biomass of cassava for different growing seasons could help design appropriate management to improve yield. The objective was to evaluate the forking date, leaf growth, and storage root yield of different cassava genotypes grown at different planting dates. Four cassava genotypes (Kasetsart 50, Rayong 9, Rayong 11, and CMR38–125–77) were evaluated using a randomized complete block design with four replications. The cassava genotypes were planted on 20 April, 25 May, 30 June, 5 October, 10 November, and 15 December 2015, and 19 May and 3 November 2016. The soil properties prior to the planting, forking date, leaf area index (LAI), dry weights, harvest index (HI), starch content, and weather data were recorded. The forking date patterns for all of the growing seasons varied depending on the cassava genotypes. The weather caused occurring in the first forking for the Rayong 11 and CMR38–125–77 and the second forking for Rayong 11, but not for Kasetsart 50. The forking CMR38–125–77 had a higher LAI, leaf dry weight, biomass, and storage root dry weight than the non-forking Rayong 9. The higher storage root yields in Rayong 9 compared with Rayong 11 were due to an increased partitioning of the storage roots.


Sign in / Sign up

Export Citation Format

Share Document