Dissolution of milled-silicate rock fertilisers in the soil

Soil Research ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 441 ◽  
Author(s):  
J. Priyono ◽  
R. J. Gilkes

Dissolution of dry-milled basalt, dolerite, gneiss, and K-feldspar added to 23 soils has been related to milling time and soil properties. The rocks milled for 10, 60, and 120 min were mixed with 23 type of soils from south-western Australia at a rock/soil ratio of 1/100 (≈10 t/ha), wetted to 110% field capacity, then incubated at 20°C for 2 and 10 months. Measurements of cations extractable by 1 M CH3COONH4 at pH 7 indicate that substantial dissolution occurred in the soil and that milling increased dissolution. After 10 months of incubation, about 18% of Ca and Mg had dissolved from basalt and dolerite milled for 120 min and 40% of Na and K from gneiss and K-feldspar milled for 120 min. Some dissolution occurred with 1 h extraction of non-incubated rock–soil mixtures and these released elements are considered to be readily available plant nutrients. The silicate rocks had minor effects on soil pH and EC of soil-rock mixtures (i.e. increased pH by ≤0.5 unit and EC by ≤127 μS/cm in 1 : 5 water extracts). The large increases in silicate rock dissolution in soils due to milling indicate that milled basalt and dolerite may be used as Ca and Mg fertilisers, and K-feldspar as a K fertiliser. Further research is needed to identify soils and plants for which the application of the silicate rock fertilisers will be most beneficial.

2012 ◽  
Vol 92 (4) ◽  
pp. 589-598 ◽  
Author(s):  
Mônica B. Benke ◽  
Tee Boon Goh ◽  
Rigas Karamanos ◽  
Newton Z. Lupwayi ◽  
Xiying Hao

Benke, M. B., Goh, T. B., Karamanos, R., Lupwayi, N. Z. and Hao, X. 2012. Retention and nitrification of injected anhydrous NH3as affected by soil pH. Can. J. Soil Sci. 92: 589–598. Anhydrous ammonia is an economical and extensively used fertilizer, yet loss after injection can reduce its agronomic efficiency. A laboratory experiment was conducted to examine how soil properties affect ammonia retention and nitrification following anhydrous NH3injection using 10 different Canadian prairie soils. Soils were also injected with atmospheric air for comparison. Following injection, soils were incubated for up to 216 h at field capacity. Among the soil properties studied [pH (1:2 water), clay, total N, and organic C contents], only pH was negatively related (R2=0.55, n=10, 24 h incubation) to percentage injected N retained by soil. The amount of N retained by soil 24 h following injection was 92±2% (mean±SEM) when pH <6, compared with 64±2% when pH>7.5. Rate of nitrification increased (P<0.001) about 48–96 h following injection and was greater in pH>7.5 than pH<6 soils. There was no difference (P>0.05) in bacterial diversity between ammonia- and air-injected soils. The slower nitrification rates suggest that potential leaching and denitrification losses in acid soils could be smaller than in alkaline soils.


1977 ◽  
Vol 25 (5) ◽  
pp. 515 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

The distribution and abundance of large-spored vesicular arbuscular (VA) endophytes was examined at three localities in Western Australia. Within each locality, soil samples were collected from sites with a range of soil properties and superphosphate histories. Vesicular arbuscular endophytes were widespread. Spores were found in all but five of 104 samples. In two of the samples where spores were not found, plants grown in the soils formed VA mycorrhizas. Root infection by a fine endophyte resembling Rhizophagus tenuis was also frequently observed. Five spore types were found. Honey-coloured sessile spores were present in 85% of the samples. The yellow vacuolate spore type was the second most common endophyte, but its distribution was mostly limited to cultivated and fertilized soils. Endophytes other than the yellow vacuolate spore type occurred on both virgin and agricultural soils. The distribution of honey-coloured sessile and yellow vacuolate spores in cultivated soils appeared to be associated with variation in soil pH. The total numbers of spores collected on a 106 μm sieve were not correlated with soil pH, NaHCO3-extractable phosphorus or superphosphate history.


2016 ◽  
Vol 24 (1) ◽  
pp. 39-46
Author(s):  
Winarna Winarna ◽  
Iput Pradiko ◽  
Muhdan Syarovy ◽  
Fandi Hidayat

Development of oil palm plantation on peatland was faced with hydrophobicity problem caused by over drained. Hydrophobicity could reduce water retention and nutrient availability in the peat soil. Beside of proper water management application, addition of soil ameliorant which contain iron could increase stability and improve peat soil fertility. The study was conducted to obtain the effect of steel slag on peat soil properties and hydrophobicity. In this study, peat soil was incorporated with steel slag and incubated in 60 days period. The research was employed completely randomized design (CRD) factorial 2 x 2 x 4. First factor is peat maturity consists of two levels: sapric (S) and hemic (H), while the second factor is soil moisture which also consist of two levels: field capacity (W1) and dry (under the critical water content) (W2). The third factor is steel slag dosage which consist of four levels: 0 g pot (TB0), 7.17 g pot (TB1), 14.81 g -1 -1 pot (TB2), and 22.44 g pot (TB3). The result showed that application of steel slag significantly increase of soil pH, ash content, and water retention at pF 4.2. Furthermore, application of steel slag significantly reduce time for water reabsorption (wettability) in sapric. On the other hand, there are negative corellation between water penetration and soil pH, ash content, and water retention at pF 4.2. Overall, application of steel slag could increase wettability and prevent peat soil hydrophobicity.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Gabriel Soropa ◽  
Olton M. Mbisva ◽  
Justice Nyamangara ◽  
Ermson Z. Nyakatawa ◽  
Newton Nyapwere ◽  
...  

AbstractA study was conducted to examine spatial variability of soil properties related to fertility in maize fields across varying soil types in ward 10 of Hurungwe district, Zimbabwe; a smallholder farming area with sub-humid conditions and high yield potential. Purposively collected and geo-referenced soil samples were analyzed for texture, pH, soil organic carbon (OC), mineral N, bicarbonate P, and exchangeable K. Linear mixed model was used to analyze spatial variation of the data. The model allowed prediction of soil properties at unsampled sites by the empirical best linear unbiased predictor (EBLUP). Evidence for spatial dependence in the random component of the model was evaluated by calculating Akaike’s information criterion. Soil pH ranged from 4.0 to 6.9 and showed a strong spatial trend increasing from north to south, strong evidence for a difference between the home and outfields with homefields significantly higher and between soil textural classes with the sand clay loam fraction generally higher. Soil OC ranged from 0.2 to 2.02% and showed no spatial trend, but there was strong evidence for a difference between home and outfields, with mean soil OC in homefields significantly larger, and between soil textural classes, with soil OC largest in the sandy clay loams. Both soil pH and OC showed evidence for spatial dependence in the random effect, providing a basis for spatial prediction by the EBLUP, which was presented as a map. There were significant spatial trends in mineral N, available P and exchangeable K, all increasing from north to south; significant differences between homefields and outfields (larger concentrations in homefields), and differences between the soil textural classes with larger concentrations in the sandy clay loams. However, there was no evidence for spatial dependence in the random component, so no attempt was made to map these variables. These results show how management (home fields vs outfields), basic soil properties (texture) and other factors emerging as spatial trends influence key soil properties that determine soil fertility in these conditions. This implies that the best management practices may vary spatially, and that site-specific management is a desirable goal in conditions such as those which apply in Ward 10 of Hurungwe district in Zimbabwe.


1972 ◽  
Vol 52 (3) ◽  
pp. 427-438 ◽  
Author(s):  
A. J. MacLEAN ◽  
R. L. HALSTEAD ◽  
B. J. FINN

Liming of six acid soil samples in an incubation experiment with rates to raise the soil pH to 6.0 or above eliminated Al soluble in 0.01 M CaCl2, reduced soluble Mn and Zn, increased NO3-N markedly, and at the highest pH increased the amounts of NaHCO3-soluble P in some of the soils. In corresponding pot experiments, liming increased the yield of alfalfa and in three of the soils the yield of barley also. Liming reduced the concentrations of the metals in the plants and at the highest pH tended to increase the P content of the plants. Liming to a pH of about 5.3 eliminated or greatly reduced soluble Al and the soils were base saturated as measured by the replacement of Al, Ca, and Mg by a neutral salt. There was some evidence that liming to reduce soluble Al and possibly Mn was beneficial for plant growth. Gypsum increased the concentrations of Al, Mn, and Zn in 0.01 M CaCl2 extracts of the soils whereas phosphate reduced them. The changes in the Mn content of the plants following these treatments were in agreement with the amounts of Mn in the CaCl2 extracts.


2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


2018 ◽  
pp. 1-14
Author(s):  
Alidad Karami ◽  
Sadegh Afzalinia

Aims: Determining effects of spatial variation of some soil properties on wheat quantity and quality variation in order that proper soil and inputs management can be applied for sustainable wheat production. Study Design: Analyzing data of a field with center pivot irrigation system and uniform management using the geostatistical method. Place and Duration of Study: Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, Darab, Iran, from September 2013 to February 2014. Methodology: Wheat yield data harvested by class lexion 510 combine from 25 m2 plots (11340 locations) with the corresponding geographical location were used. Besides, soil properties and wheat yield were measured at 36 randomly selected points on the field. Interpolation of parameters was predicted with the best semi-variogram model using kriging, inverse distance weighted (IDW), and cokriging methods. Results: Results showed that wheat yield varied from 2 to 10.08 tons per hectare. Cokriging with cofactor of kernel weight interpolator had more accuracy compared to the combine default interpolator (kriging). A logical, linear correlation was found between different parameters. The best variogram model for pH, OC, and ρb was exponential, for EC, TNV, SP, soil silt and clay percentage was spherical, and for soil, percentage sand was Gaussian model. Data of soil sand, silt, and clay percentage, EC, TNV, and SP had strong spatial structure, and soil pH, OC, and ρb had moderate spatial structure. The best interpolation method for soil pH, EC, sand and silt percentage was kriging method; while, for TNV, SP, OC, ρb, and clay percentage was IDW. Conclusion: There was a close relationship between wheat yield variation and changes in the soil properties. Soil properties and wheat yield distribution maps provided valuable information which could be used for wheat yield improvement in precision agriculture.


Sign in / Sign up

Export Citation Format

Share Document