scholarly journals Non-linear response of soil N2O emissions to nitrogen fertiliser in a cotton–fallow rotation in sub-tropical Australia

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 494 ◽  
Author(s):  
Clemens Scheer ◽  
David W. Rowlings ◽  
Peter R. Grace

Nitrogen (N) fertiliser is a major source of atmospheric nitrous oxide (N2O), and over recent years there has been growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still a high level of uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N-rate treatments (0, 90, 180 and 270kgNha–1) in a cotton–fallow rotation on a black vertosol in Australia. We observed a non-linear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55, 0.67, 1.07 and 1.89kgNha–1 for the four respective N fertiliser rates, but no N response to yield occurred above 180kgNha–1. The annual N2O emission factors induced by N fertiliser were 0.13, 0.29 and 0.50% for the 90, 180 and 270kgNha–1 treatments respectively, significantly lower than the IPCC Tier 1 default value of 1.0%. This nonlinear response suggests that an exponential N2O emissions model may be more appropriate for estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N-management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield.

Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 359 ◽  
Author(s):  
J. Ma ◽  
X. L. Li ◽  
H. Xu ◽  
Y. Han ◽  
Z. C. Cai ◽  
...  

A 3-year field experiment was conducted to study the effects of nitrogen fertiliser and straw application on CH4 and N2O emissions from a paddy rice field in China from 2003 to 2005. Three rates of nitrogen fertiliser (0, 200, and 270 kg N/ha) and 2 levels of wheat straw (0 and 3.75 × 103 kg/ha) were adopted in this experiment. The effect of nitrogen fertiliser application on CH4 emission seemed to be affected by application rate. Nitrogen fertiliser decreased CH4 emission relative to the control when applied at a rate of 200 kg N/ha, but the effect lessened if the application rate was further increased to a rate of 270 kg N/ha. The depressive effect of nitrogen fertiliser application on CH4 emissions from rice fields became more pronounced when wheat straw was also incorporated with fertiliser, compared with nitrogen fertiliser application alone. Straw incorporation significantly enhanced CH4 emission by 3–11 times (P < 0.05). Nitrogen fertiliser application increased N2O emission by 5–6 times when applied at a rate of 200 kg N/ha and by 10–14 times when applied at a rate of 270 kg N/ha. On average, straw incorporation tended to decrease N2O emission by about 30% significant (P > 0.05). More than 50% of seasonal total amount of N2O was emitted within 11 days after fertiliser application at panicle initiation. The global warming potential caused by both CH4 and N2O emissions was affected by nitrogen fertiliser application rate and significantly stimulated by wheat straw incorporation. The global warming potential was lowest when nitrogen fertiliser was applied at a rate of 200 kg N/ha.


Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 43-57
Author(s):  
Rhys Rebello ◽  
Paul J. Burgess ◽  
Nicholas T. Girkin

Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1277
Author(s):  
Cheng-Hsien Lin ◽  
Richard H. Grant ◽  
Cliff T. Johnston

Nitrous oxide (N2O) emissions from agricultural soil are substantially influenced by nitrogen (N) and field management practices. While routinely soil chambers have been used to measure emissions from small plots, measuring field-scale emissions with micrometeorological methods has been limited. This study implemented a backward Lagrangian stochastic (bLS) technique to simultaneously and near-continuously measure N2O emissions from four adjacent fields of approximately 1 ha each. A scanning open-path Fourier-transform infrared spectrometer (OP-FTIR), edge-of-field gas sampling and measurement, locally measured turbulence, and bLS emissions modeling were integrated to measure N2O emissions from four adjacent fields of maize production using different management in 2015. The maize N management treatments consisted of 220 kg NH3-N ha−1 applied either as one application in the fall after harvest or spring before planting or split between fall after harvest and spring before planting. The field preparation treatments evaluated were no-till (NT) and chisel plow (ChP). This study showed that the OP-FTIR plus bLS method had a minimum detection limit (MDL) of ±1.2 µg m−2 s−1 (3σ) for multi-source flux measurements. The average N2O emission of the four treatments ranged from 0.1 to 2.3 µg m−2 s−1 over the study period of 01 May to 11 June after the spring fertilizer application. The management of the full-N rate applied in the fall led to higher N2O emissions than the split-N rates applied in the fall and spring. Based on the same N application, the ChP practice tended to increase N2O emissions compared with NT. Advection of N2O from adjacent fields influenced the estimated emissions; uncertainty (1σ) in emissions was 0.5 ± 0.3 µg m−2 s−1 if the field of interest received a clean measured upwind background air, but increased to 1.1 ± 0.5 µg m−2 s−1 if all upwind sources were advecting N2O over the field of interest. Moreover, higher short-period emission rates (e.g., half-hour) were observed in this study by a factor of 1.5~7 than other micrometeorological studies measuring N2O-N loss from the N-fertilized cereal cropping system. This increment was attributed to the increase in N fertilizer input and soil temperature during the measurement. We concluded that this method could make near-continuous “simultaneous” flux comparisons between treatments, but further studies are needed to address the discrepancies in the presented values with other comparable N2O flux studies.


Soil Research ◽  
2017 ◽  
Vol 55 (2) ◽  
pp. 191 ◽  
Author(s):  
Nirmali Bordoloi ◽  
K. K. Baruah

Nitrous oxide (N2O) is considered a major contributor to global climate change in addition to carbon dioxide and methane. A significant quantity of N2O emission originates from agriculture, largely from high rates of fertiliser application. We studied N2O emissions from wheat field to evaluate the effect of different forms of fertilisers and the potential for emission reduction. Field experiments were conducted for two consecutive seasons with four fertilisers, namely inorganic fertiliser (NPK), starch-coated urea (SCU), neem-coated urea (NCU), and urea alone (UA) in a tropical wheat ecosystem. Gas samples were collected from the field at weekly intervals using the static chamber technique and analysed with a gas chromatograph. The cumulative N2O emissions were higher from the NPK amended field (3.19kgN2O-Nha–1) followed by UA (3.05kg N2O-N ha–1). The SCU, NCU, and UA amendments decreased the total N2O emissions by 23%, 12%, and 4%, respectively (P<0.05) over the application of NPK. The results indicate a good correlation of N2O emissions with soil organic carbon, soil NO3–-N, NH4+-N, leaf area, and plant biomass. The application of SCU resulted in higher grain productivity and was the most effective substitute for conventional fertiliser in terms of reducing N2O emissions from a tropical wheat ecosystem.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shaankua E. Lemarpe ◽  
Collins M. Musafiri ◽  
Joseph M. Macharia ◽  
Milka N. Kiboi ◽  
Onesmus K. Ng’etich ◽  
...  

Increased concentration of atmospheric nitrous oxide (N2O), a potent greenhouse gas (GHG), is of great concern due to its impact on ozone layer depletion leading to climate change. Ozone layer depletion allows penetration of ultraviolet radiations, which are hazardous to human health. Climate change culminates in reduced food productivity. Limited empirical studies have been conducted in Sub-Saharan Africa (SSA) to quantify and understand the dynamics of soil N2O fluxes from smallholder cropping systems. The available literature on soil N2O fluxes in SSA is limited; hence, there is a pressing need to consolidate it to ease mitigation targeting and policy formulation initiatives. We reviewed the state of N2O emissions from selected cropping systems, drivers that significantly influence N2O emissions, and probable soil N2O emissions mitigation options from 30 studies in SSA cropping systems have been elucidated here. The review outcome indicates that coffee, tea, maize, and vegetables emit N2O ranging from 1 to 1.9, 0.4 to 3.9, 0.1 to 4.26, and 48 to 113.4 kg N2O-N ha-1 yr−1, respectively. The yield-scaled and N2O emissions factors ranged between 0.08 and 67 g N2O-N kg−1 and 0.01 and 4.1%, respectively, across cropping systems. Soil characteristics, farm management practices, and climatic and environmental conditions were significant drivers influencing N2O emissions across SSA cropping systems. We found that site-specific soil N2O emissions mitigation measures are required due to high variations in N2O drivers across SSA. We conclude that appropriate fertilizer and organic input management combined with improved soil management practices are potential approaches in N2O emissions mitigation in SSA. We recommend that (i) while formulating soil N2O emissions mitigation approaches, in SSA, policymakers should consider site-specific targeting approaches, and (ii) more empirical studies need to be conducted in diverse agroecological zones of SSA to qualify various mitigation options on N2O emissions, yield-scaled N2O emissions, and N2O emission factors which are essential in improving national and regional GHG inventories.


Soil Systems ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Rivka Fidel ◽  
David Laird ◽  
Timothy Parkin

Biochar application to soil has been proposed as a means for reducing soil greenhouse gas emissions and mitigating climate change. The effects, however, of interactions between biochar, moisture and temperature on soil CO2 and N2O emissions, remain poorly understood. Furthermore, the applicability of lab-scale observations to field conditions in diverse agroecosystems remains uncertain. Here we investigate the impact of a mixed wood gasification biochar on CO2 and N2O emissions from loess-derived soils using: (1) controlled laboratory incubations at three moisture (27, 31 and 35%) and three temperature (10, 20 and 30 °C) levels and (2) a field study with four cropping systems (continuous corn, switchgrass, low diversity grass mix and high diversity grass-forb mix). Biochar reduced N2O emissions under specific temperatures and moistures in the laboratory and in the continuous corn cropping system in the field. However, the effect of biochar on N2O emissions was only significant in the field and no effect on cumulative CO2 emissions was observed. Cropping system also had a significant effect in the field study, with soils in grass and grass-forb cropping systems emitting more CO2 and less N2O than corn cropping systems. Observed biochar effects were consistent with previous studies showing that biochar amendments can reduce soil N2O emissions under specific but not all, conditions. The disparity in N2O emission responses at the lab and field scales suggests that laboratory incubation experiments may not reliably predict the impact of biochar at the field scale.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 552 ◽  
Author(s):  
Massimiliano De Antoni Migliorati ◽  
Mike Bell ◽  
David Lester ◽  
David W. Rowlings ◽  
Clemens Scheer ◽  
...  

The potential for elevated nitrous oxide (N2O) losses is high in subtropical cereal cropping systems in north-east Australia, where the fertiliser nitrogen (N) input is one single application at or before planting. The use of urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) has been reported to substantially decrease N2O emissions and increase crop yields in humid, high-intensity rainfall environments. However, it is still uncertain whether this product is similarly effective in contrasting soil types in the cropping region of north-east Australia. In this study the grain yield response of sorghum (Sorghum bicolor L. Moench) to rates of fertiliser N applied as urea or urea coated with DMPP were compared in crops grown on a Vertisol and an Oxisol in southern Queensland. Seasonal N2O emissions were monitored on selected treatments for the duration of the cropping season and the early stages of a subsequent fallow period using a fully automated high-frequency greenhouse gas measuring system. On each soil the tested treatments included an unfertilised control (0kgNha–1) and two fertilised treatments chosen on the basis of delivering at least 90% of seasonal potential grain yield (160 and 120kgNha–1 on the Vertisol and Oxisol respectively) or at a common (suboptimal) rate at each site (80kgNha–1). During this study DMPP had a similar impact at both sites, clearly inhibiting nitrification for up to 8 weeks after fertiliser application. Despite the relatively dry seasonal conditions during most of the monitoring period, DMPP was effective in abating N2O emissions on both soils and on average reduced seasonal N2O emissions by 60% compared with conventional urea at fertiliser N rates equivalent to those producing 90% of site maximum grain yield. The significant abatement of N2O emissions observed with DMPP, however, did not translate into significant yield gains or improvements in agronomic efficiencies of fertiliser N use. These results may be due to the relatively dry growing season conditions before the bulk of crop N acquisition, which limited the exposure of fertiliser N to large losses due to leaching and denitrification.


2013 ◽  
Vol 10 (8) ◽  
pp. 13191-13229 ◽  
Author(s):  
T. Huang ◽  
B. Gao ◽  
P. Christie ◽  
X. Ju

Abstract. The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat–summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. N0, Nopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon) with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha−1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40–1.44 Mg C ha−1 yr−1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat–summer maize double-cropping system.


2021 ◽  
Author(s):  
Keyu Ren ◽  
Minggang Xu ◽  
Rong Li ◽  
Lei Zheng ◽  
Shaogui Liu ◽  
...  

Abstract Optimal nitrogen (N) management is critical for efficient crop production and agricultural pollution control. However, it is difficult to implement advanced management practices on smallholder farms due to a lack of knowledge and technology. Here, using 35,502 on-farm fertilization experiments, we demonstrated that smallholders in China could produce more grain with less N fertilizer use through optimizing N application rate. The yields of wheat, maize and rice were shown to increase between 10% and 19% while N application rates were reduced by 15–19%. These changes resulted in an increase in N use efficiency (NUE) by 32–46% and a reduction in N surplus by 40% without actually changing farmers’ operational practices. By reducing N application rates in line with official recommendations would not only save fertilizer cost while increasing crop yield, but at the same time reduce environmental N pollution in China. However, making progress towards further optimizing N fertilizer use to produce more grain with less pollution would require managements to improve farmers’ practices which was estimated to cost about 11.8 billion US dollars to implement.


2008 ◽  
Vol 48 (2) ◽  
pp. 147 ◽  
Author(s):  
Coby J. Hoogendoorn ◽  
Cecile A. M. de Klein ◽  
Alison J. Rutherford ◽  
Selai Letica ◽  
Brian P. Devantier

Urine deposited by grazing animals represents the largest source of N2O emissions in New Zealand. Sheep-grazed hill pastures are an important component of New Zealand pastoral land, but information on N2O emissions from these areas is limited. The purpose of this study was to investigate the effect of increasing rates of fertiliser nitrogen and of a nitrification inhibitor on N2O emissions from urine patches. The study was carried out in grazed paddock-scale trials at the Ballantrae and Invermay Research Stations, New Zealand. The fertiliser N treatments were 0, 100, 300 and 750 (500 for Invermay) kg N/ha.year. Nitrous oxide measurements were conducted in the spring of 2005 and 2006, following applications of synthetic sheep urine with or without dicyandiamide (DCD) in these four N treatments. In both years and at both sites, N2O emissions increased with N fertiliser application rate in both urine and non-urine affected areas. The addition of DCD to the synthetic urine reduced N2O emissions from the urine affected areas during the measurement period by 60–80% at Ballantrae and by 40% at Invermay. The N2O emission factors for the artificial sheep urine (expressed as N2O-N lost as % of N applied) ranged from 0.01 to 1.06%, with the higher values generally found in the high N fertiliser treatments. The N2O emission factors were generally less than or similar to those from sheep urine applied to flat land pasture.


Sign in / Sign up

Export Citation Format

Share Document