Relief and edaphoclimatic conditions as influencing agents of CO2 release in Alagoas Caatinga, Brazil

Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 306
Author(s):  
Élida Monique da Costa Santos ◽  
Kallianna Dantas Araujo ◽  
Mayara Andrade Souza ◽  
Danúbia Lins Gomes ◽  
Elba dos Santos Lira ◽  
...  

The release of carbon dioxide (CO2) occurs through soil respiration. However, release of CO2 from soil to the atmosphere is subject to interference from agents such as relief, edaphic and climatic conditions. Thus, this research aimed to quantify edaphic respiration related to edaphoclimatic factors in a toposequence area in Caatinga of Delmiro Gouveia, Alagoas, Brazil. The research was conducted from February 2013 to June 2014, with bimonthly collections during day and night. The soil CO2 losses, temperature measurements, soil water content and rainfall were quantified. We verified that, independent of the evaluated points, CO2 release was higher at night. Half-slope and shoulder were the areas with the highest emissions. Additionally, the CO2 emissions presented annual variation, increasing with the availability of soil water and showing peaks of release in the rainy season. Soil and air temperature had no direct influence on soil CO2 release; however, the highest CO2 emissions occurred when temperatures were moderate and stable. Therefore, the conservation of this unique Brazilian biome is necessary because the impacts of its disturbance can increase the level of CO2 released from the soil, increasing the amount of CO2in the atmosphere.

2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Sri Walyoto

This article analyzes the loss of carbon dioxide (CO2) released in the forest conversion to oil palm plantations. This research data gathered from the relevant secondary data and relate published reports. This research finds that a loss of release of carbon dioxide (CO2) per hectare of US $ 9,800 with a carbon price of USD2 of US $ 14,000 carbon price of USD3 and US $ 19,600 in carbon price of USD4. In addition, this conversion also has a significant impact on global warming (GWP) and global climate change. Keywords: oil palm plantation, CO2 release, GWP, climate change. 


Author(s):  
Theodore Hanein ◽  
Marco Simoni ◽  
Chun Long Woo ◽  
John L Provis ◽  
Hajime Kinoshita

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (~900°C). A novel...


2017 ◽  
Author(s):  
Emilia Urbanek ◽  
Stefan H. Doerr

Abstract. Soil CO2 emissions are strongly dependent on water distribution in soil pores, which in turn can be affected by soil water repellency (SWR; hydrophobicity). SWR restricts infiltration and movement of water, affecting soil hydrology as well as biological and chemical processes. Effects of SWR on soil carbon dynamics and specifically on soil respiration (CO2 efflux) have been studied in a few laboratory experiments but they remain poorly understood. Existing studies suggest that soil respiration is reduced in water repellent soils, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known. Here we report on the first field-based study that tests whether soil water repellency indeed reduces soil respiration, based on in situ field measurements carried out over three consecutive years at a grassland and pine forest site under the humid temperate climate of the UK. CO2 efflux was reduced on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. However, the highest respiration rates occurred not when SWR was absent, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. This somewhat surprising phenomenon can be explained by SWR-induced preferential flow, directing water and nutrients to microorganisms decomposing organic matter concentrated in hot spots near preferential flow paths. Water repellent zones provide air-filled pathways through the soil, which facilitate soil-atmosphere O2 and CO2 exchanges. This study demonstrates that SWR have contrasting effects on CO2 fluxes and, when spatially-variable, can enhance CO2 efflux. Spatial variability in SWR and associated soil moisture distribution needs to be considered when evaluating the effects of SWR on soil carbon dynamics under current and predicted future climatic conditions.


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2019 ◽  
Vol 19 (23) ◽  
pp. 14949-14965 ◽  
Author(s):  
Catherine C. Ivanovich ◽  
Ilissa B. Ocko ◽  
Pedro Piris-Cabezas ◽  
Annie Petsonk

Abstract. While individual countries work to achieve and strengthen their nationally determined contributions (NDCs) to the Paris Agreement, the growing emissions from two economic sectors remain largely outside most countries' NDCs: international shipping and international aviation. Reducing emissions from these sectors is particularly challenging because the adoption of any policies and targets requires the agreement of a large number of countries. However, the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO) have recently announced strategies to reduce carbon dioxide (CO2) emissions from their respective sectors. Here we provide information on the climate benefits of these proposed measures, along with related potential measures. Given that the global average temperature has already risen 1 ∘C above preindustrial levels, there is only 1.0 or 0.5 ∘C of additional “allowable warming” left to stabilize below the 2 or 1.5 ∘C thresholds, respectively. We find that if no actions are taken, CO2 emissions from international shipping and aviation may contribute roughly equally to an additional combined 0.12 ∘C to global temperature rise by end of century – which is 12 % and 24 % of the allowable warming we have left to stay below the 2 or 1.5 ∘C thresholds (1.0 and 0.5 ∘C), respectively. However, stringent mitigation measures may avoid over 85 % of this projected future warming from the CO2 emissions from each sector. Quantifying the climate benefits of proposed mitigation pathways is critical as international organizations work to develop and meet long-term targets.


Sign in / Sign up

Export Citation Format

Share Document