Nutrient concentrations in runoff from pasture in Westernport, Victoria

Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 139 ◽  
Author(s):  
NB Greenhill ◽  
KI Peverill ◽  
LA Douglas

Concentrations of nitrogen and phosphorus forms, calcium, sulfur and potassium in runoff from previously fertilized plots were explained on the basis of differences in slope, previous fertilizer history, and land management at three runoff sites. Data are also given for concentrations of nitrogen and phosphorus forms, calcium, sulfur and potassium in runoff that occurred after superphosphate was applied. High concentrations of phosphorus forms, calcium and sulfur occurred in runoff from a storm 24 h after fertilizer application. At other times, concentrations of all measured parameters were low, and similar to those reported elsewhere.

2017 ◽  
Vol 31 (2) ◽  
pp. 243-249 ◽  
Author(s):  
Tsetska Simeonova ◽  
Dimitranka Stoicheva ◽  
Venelina Koleva ◽  
Zofia Sokołowska ◽  
Mieczysław Hajnos

Abstract The study characterized the regime of nutrient leaching under different nitrogen and phosphorus supply of irrigated maize grown as monoculture on Fluvisol for the period 1999-2008 and additionally studied in the years 2009, 2010, and 2011. The aim of the study was to estimate the effect of longterm fertilizer application on the leaching of nutrients from the soil under maize grown as monoculture. The experiment design included four nitrogen fertilizer rates (B1-control, B5, B4, B3, B2) calculated to compensate 50, 75, 100, and 125% from the plant N uptake, respectively. The field plots were equipped with lysimeters (at 50 and 100 cm depth) for studying the relationship between the applied fertilizer rates and the nutrient concentrations in the lysimetric water. The greatest nitrogen concentration in lysimetric water was observed under variant (B3-N200 P150) throughout the study period and the highest N losses were registered (36 kg ha-1) in 2010 under the same treatment (B3). A very good correlation was found between the N rates, calcium, and magnesium losses. Lysimetric water component compensation shows that agricultural activities have only influenced the speed of weathering and had no significant effect on the rates.


2019 ◽  
pp. 307-313
Author(s):  
Frida Veibäck ◽  
Lena Johansson Westholm

Since the introduction of an EC-directive on stronger demands on covering and lining oflandfills, the Swedish Parliament has adopted new legislation on waste deposition.Within a near future, a large number of landfills in Sweden have to be closed down due tothese stronger demands. Covering of landfills has traditionally been carried out with tillas covering material. The use of till causes depletion of a natural resource and in addition,high costs for transportation might arise. Alternative materials have thus been sought for.Two potential materials are sludge and ash. Their behaviour with regard to leaching is notvery well known and the focus of this work is to further investigate this issue. A pilotscale area on a closed-down part of the Gryta landfill site in Viistenis, Sweden; was partlycovered with composted sewage sludge mixed with mineral soil, partly with ash. The aimwas to find out whether the leachate from the covered areas had to be subject for furthertreatment before being discharged into the recipient. The leachate was analysed fornitrogen and phosphorus. The results from the first three months of the experimentshowed high concentrations of both nitrogen and phosphorus in the leachate, probablydue to a washing effect. It is expected that the nutrient concentrations will decrease in thefuture when the content of nutrients in the covering materials have been washed out andwhen vegetation has been established. Further investigations of the leachate will confirmthis. Based on these findings and the fact that the materials fulfil other requirements forcovering materials, it was concluded that both sludges and ashes could be regarded assuitable materials for a sustainable landfill covering. Further investigations on the subjectare however suggested.


1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


1986 ◽  
Vol 43 (8) ◽  
pp. 1504-1514 ◽  
Author(s):  
F. Joan Hardy ◽  
Ken S. Shortreed ◽  
John G. Stockner

Inorganic nitrogen and phosphorus were applied weekly during the growing season from 1980 to 1982 and twice weekly in 1983 to Hobiton Lake, a warm monomictic coastal lake in British Columbia. The lake was not fertilized in 1984. Average numbers of bacteria during the growing season decreased from a high of 1.53 × 106∙mL−1 in the fertilized condition to 0.84 × 106∙mL−1 in the unfertilized condition. Chlorophyll a concentrations decreased from a maximum seasonal average of 2.69 μg∙L−1 (1981) to 1.30 μg∙L−1 (1984), and algal numbers decreased from 5.83 × 104∙mL−1 (1983) to 2.29 × 104∙mL−1 (1984). Although the numbers of phytoplankton in each size fraction (picoplankton, nanoplankton, or microplankton) decreased in the unfertilized condition, the greatest change was an almost fourfold decrease in picoplankton, which consisted of 90% cyanobacteria (primarily Synechococcus spp.). Abundance of the large diatoms Rhizosolenia spp. and Melosira spp. increased in 1984, resulting in an increase in average seasonal algal volume. Average densities of medium (0.15–0.84 mm) and large (0.85–1.5 mm) zooplankton were greatest in 1982, while rotifers and small zooplankton (0.10–0.14 mm) were most dense in 1984 following nutrient reduction. The lake had relatively high concentrations of planktivorous juvenile sockeye salmon (Oncorhynchus nerka) that appeared to minimize any direct effect of nutrient additions on zooplankton densities.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1080 ◽  
Author(s):  
Nícolas Reinaldo Finkler ◽  
Flavia Tromboni ◽  
Iola Boëchat ◽  
Björn Gücker ◽  
Davi Gasparini Fernandes Cunha

Pollution abatement through phosphorus and nitrogen retention is a key ecosystem service provided by streams. Human activities have been changing in-stream nutrient concentrations, thereby altering lotic ecosystem functioning, especially in developing countries. We estimated nutrient uptake metrics (ambient uptake length, areal uptake rate, and uptake velocity) for nitrate (NO3–N), ammonium (NH4–N), and soluble reactive phosphorus (SRP) in four tropical Cerrado headwater streams during 2017, through whole-stream nutrient addition experiments. According to multiple regression models, ambient SRP concentration was an important explanatory variable of nutrient uptake. Further, best models included ambient NO3–N and water velocity (for NO3–N uptake metrics), dissolved oxygen (DO) and canopy cover (for NH4–N); and DO, discharge, water velocity, and temperature (for SRP). The best kinetic models describing nutrient uptake were efficiency-loss (R2 from 0.47–0.88) and first-order models (R2 from 0.60–0.85). NO3–N, NH4–N, and SRP uptake in these streams seemed coupled as a result of complex interactions of biotic P limitation, abiotic P cycling processes, and the preferential uptake of NH4–N among N-forms. Global change effects on these tropical streams, such as temperature increase and nutrient enrichment due to urban and agricultural expansion, may have adverse and partially unpredictable impacts on whole-stream nutrient processing.


2005 ◽  
Vol 65 (1) ◽  
pp. 141-157 ◽  
Author(s):  
J. J. Ramírez ◽  
C. E. M. Bicudo

The vertical and diurnal variation of nitrogen and phosphorus forms, as well as that of soluble reactive silica (SRS), were studied in four sampling days at Garças reservoir, a shallow tropical one located in the city of São Paulo, in southeastern Brazil. Except for N-NH4, all other inorganic forms of nitrogen (N-NO2, N-NO3, and total N) demonstrated decreased concentrations toward the bottom of reservoir. Similarly, all showed significant diurnal differences on every sampling day, with increased values during the night due to absence of photosynthetic assimilation during that period. In the sampling days, these forms decreased on the spring sampling day due to the bloom of Microcystis registered during this period of the year. All three forms of phosphorus (SRP, particulate P, and total P) showed significant vertical variation, except on the fall sampling day. On the summer sampling day there was an increase of both total P and particulate P, the latter because it constitutes more than 70% of the total P during all sampling days. Hourly phosphorus variation was significant during all sampling days, except for the summer one. The SRS vertical variation was significant during all sampling days, except for that in the spring. It was also different hourly on sampling days.


1995 ◽  
Vol 25 (1) ◽  
pp. 18-28 ◽  
Author(s):  
B.J. Hawkins ◽  
M. Davradou ◽  
D. Pier ◽  
R. Shortt

One-year-old seedlings of western red cedar (Thujapiicata Donn ex D.Don) and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) were grown for one season in five nutrient treatments with nitrogen (N) supplied in solution at rates of 20, 100, or 250 mg•L−1 and phosphorus (P) supplied at rates of 4, 20, or 60 mg•L−1. Growth, onset of dormancy, frost hardiness on six dates, and foliar nutrient concentrations in autumn and spring were measured. Midwinter rates of net photosynthesis and transpiration were measured at air temperatures of 4, 7, and 11 °C in seedlings from all nutrient treatments. Recovery of net photosynthesis and transpiration in whole seedlings from the three N treatments was assessed at intervals for 28 days after the seedlings were frozen to −5, −15, and −25°C. Foliar N content differed significantly among nutrient treatments and was positively correlated with supply. Mitotic activity ceased earliest in plants with low N supply. Douglas-fir seedlings in the low-N treatment also ceased height growth earliest. These differences in growth had no significant correlation with frost hardiness. No consistent differences in frost hardiness among nutrient treatments were observed. Higher rates of N and P supply resulted in higher rates of winter net photosynthesis. Net photosynthesis was reduced dramatically by night frost, with greater damage occurring at lower temperatures. Net photosynthesis recovery occurred most quickly in seedlings with the midrate of N and P supply.


2016 ◽  
Vol 31 (2) ◽  
pp. 21
Author(s):  
Juan P. González -Hermoso ◽  
Emilio Peña -Messina ◽  
Anselmo Miranda -Baeza ◽  
Luis R. Martínez -Córdoba ◽  
María T. Gutiérrez -Wing ◽  
...  

ABSTRACT. The effluents from intensive aquaculture operations such as recirculating aquaculture systems (RAS) have high concentrations of sludge that can become a source of pollution if they are not properly treated and disposed. Anaerobic digestion is commonly used for biological degradation of sludge. Pretreatments prior to anaerobic digestion can enhance sludge degradation and decrease nitrogen and phosphorus load through microbial activity. This study examines the effect of four different pretreatments (biological, chemical, mechanical and thermal) in the N and P fluxes and mass balance from a RAS effluent in a seven-month period at ambient temperature. Each month a 15-day experiment was performed. All pretreatments, except chemical, removed N (thermal 29.78%, biological 36.75%, control 42.25%, mechanical 49.46%, chemical -7.68%). All pretreatments produced phosphorus (chemical 1.96%, mechanical 16.07%, thermal 24.37%, biological 32.39%, control 58.50%). Our results showed that the mechanical pretreatment was the most effective in removing N. In contrast, none of the pretreatments reduced P content in the sludge.Efecto de cuatro pretratamientos en el flujo y balance del nitrógeno y el fósforo en efluentes de un sistema de recirculación acuícolaRESUMEN. Los efluentes de un tipo de cultivo intensivo como los Sistemas de Recirculación Acuícola (SRA) presentan altas concentraciones de lodos que pueden llegar a ser una fuente de contaminación si no son tratados y dispuestos apropiadamente. La digestión anaeróbica es usualmente empleada para llevar a cabo la degradación de los lodos. Los pretratamientos previos a la digestión anaeróbica pueden mejorar la degradación de los lodos, así como reducir la carga de nitrógeno y fósforo a través de la actividad microbiana. Este estudio examinó el efecto de cuatro pretratamientos (biológico, químico, mecánico y térmico) en el flujo y balance de masas de N y P de efluentes de un SRA durante un periodo de 7 meses a temperatura ambiente. En cada mes se llevó a cabo un experimento de 15 días. Todos los pretratamientos a excepción del químico, eliminaron nitrógeno (térmico 29.78%, biológico 36.75%, control 42.25%, mecánico 49.46%, químico -7.68%). Todos los pretratamientos produjeron fósforo (químico 1.96%, mecánico 16.07%, térmico 24.37%, biológico 32.39%, control 58.60%). Nuestros resultados indican que el pretratamiento mecánico fue el más efectivo para eliminar N. En contraste, ninguno de los pretratamientos redujo la concentración de fósforo. 


Sign in / Sign up

Export Citation Format

Share Document