Origin and assessment of water repellency of a sandy South Australian soil

Soil Research ◽  
1985 ◽  
Vol 23 (4) ◽  
pp. 623 ◽  
Author(s):  
M Ma'shum ◽  
VC Farmer

The water repellency of a sandy lucerne pasture soil is critically dependent on aqueous extraction and subsequent drying procedures. Freeze-drying converts a very severely water-repellent soil into a readily wettable soil, but subsequent rewetting and oven-drying regenerates water repellency. These changes are ascribed to changes in the molecular conformation of the organic matter. Prolonged shaking detaches organic matter coatings from sand particles and so reduces repellency. Allowing for these effects, it is shown that a sequence of alcohol-benzene extraction, acid leaching, and NaOH extraction removes the major part of the water-repellent substances present.

Soil Research ◽  
1989 ◽  
Vol 27 (4) ◽  
pp. 797 ◽  
Author(s):  
M Ma'shum ◽  
JM Oades ◽  
ME Tate

Water-repellency in sandy soils is determined by the amount of hydrophobic organic matter coating the sand particles and the specific surface area of the sands. The hydrophobic state can be simulated by coating hydrophilic sand with cetyl alcohol. Admixture of finely particulate materials with either naturally occurring water-repellent sands or the model cetyl alcohol-coated sand markedly reduced the water-repellency. Dispersible sodic clays were more effective than calcium saturated clays in reducing water-repellency, suggesting that the addition of dispersible, fine-grained illites and kaolinites couid play an important role in the rapid control of water-repellent soils in field situations.


2018 ◽  
Vol 66 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Nasrollah Sepehrnia ◽  
Olga Fishkis ◽  
Bernd Huwe ◽  
Jörg Bachmann

AbstractThe coupled transport of pollutants that are adsorbed to colloidal particles has always been a major topic for environmental sciences due to many unfavorable effects on soils and groundwater. This laboratory column study was conducted under saturated moisture conditions to compare the hydrophobic character of the suspended and mobilized colloids in the percolates released from a wettable subsoil and a water repellent topsoil. Both soils with different organic matter content were analyzed for wettability changes before and after leaching using sessile drop contact angles as well as water and ethanol sorptivity curves, summarized as repellency index. Hydrophobicity of the effluent suspensions was assessed using the C18 adsorption method. Water repellency level of the repellent soil decreased after leaching but remained on a lower level of water repellency, while, the wettable soil remained wettable. The leached colloids from the repellent soil were predominantly hydrophilic and the percentage of the hydrophobic colloid fraction in the effluent did not systematically changed with time. Total colloid release depended on soil carbon stock but not on soil wettability. Our results suggest that due to the respective character of transported colloids a similar co-transport mechanism for pollutants may occur which does not depend explicitly on soil wettability of the releasing horizon, but could be more affected by total SOM content. Further studies with a wider range of soils are necessary to determine if the dominant hydrophilic character of leached colloids is typical. Due to the mostly hydrophilic colloid character we conclude also that changes in wettability status, i.e. of wettable subsoil horizons due to the leachate, may not necessarily occur very fast, even when the overlaying topsoil is a repellent soil horizon with a high organic matter content.


Soil Research ◽  
2015 ◽  
Vol 53 (7) ◽  
pp. 786 ◽  
Author(s):  
M. M. Roper ◽  
S. L. Davies ◽  
P. S. Blackwell ◽  
D. J. M. Hall ◽  
D. M. Bakker ◽  
...  

Water-repellent (‘non-wetting’) soils are a major constraint to agricultural production in southern and south-west Australia, affecting >10 Mha of arable sandy soils. The major symptom is dry patches of surface soil, even after substantial rainfall, directly affecting agricultural production through uneven crop and pasture germination, and reduced nutrient availability. In addition, staggered weed germination impedes effective weed control, and delayed crop and pasture germination increases the risk of wind erosion. Water repellency is caused by waxy organic compounds derived from the breakdown of organic matter mostly of plant origin. It is more prevalent in soils with a sandy surface texture; their low particle surface area : volume ratio means that a smaller amount of waxy organic compounds can effectively cover a greater proportion of the particle surface area than in a fine-textured soil. Water repellency commonly occurs in sandy duplex soils (Sodosols and Chromosols) and deep sandy soils (Tenosols) but can also occur in Calcarosols, Kurosols and Podosols that have a sandy surface texture. Severity of water repellency has intensified in some areas with the adoption of no-till farming, which leads to the accumulation of soil organic matter (and hence waxy compounds) at the soil surface. Growers have also noticed worsening repellency after ‘dry’ or early sowing when break-of-season rains have been unreliable. Management strategies for water repellency fall into three categories: (i) amelioration, the properties of surface soils are changed; (ii) mitigation, water repellency is managed to allow crop and pasture production; (iii) avoidance, severely affected or poorly producing areas are removed from annual production and sown to perennial forage. Amelioration techniques include claying, deep cultivation with tools such as rotary spaders, or one-off soil inversion with mouldboard ploughs. These techniques can be expensive, but produce substantial, long-lasting benefits. However, they carry significant environmental risks if not adopted correctly. Mitigation strategies include furrow-seeding, application of wetting agents (surfactants), no-till with stubble retention, on-row seeding, and stimulating natural microbial degradation of waxy compounds. These are much cheaper than amelioration strategies, but have smaller and sometimes inconsistent impacts on crop production. For any given farm, economic analysis suggests that small patches of water repellency might best be ameliorated, but large areas should be treated initially with mitigation strategies. Further research is required to determine the long-term impacts of cultivation treatments, seeding systems and chemical and biological amendments on the expression and management of water repellency in an agricultural context.


2016 ◽  
Vol 64 (2) ◽  
pp. 160-166 ◽  
Author(s):  
T.D.P. Liyanage ◽  
D.A.L. Leelamanie

AbstractLowered stability of soil aggregates governed by insufficient organic matter levels has become a major concern in Sri Lanka. Although the use of organic manure with water repellent properties lowers the wetting rates and improves the stability of soil aggregates, its effects on soil hydrophysical properties are still not characterized. Therefore, the objective of this study was to examine the relation of water repellency induced by organic manure amendments to the water entry value and water retention of a Sri Lankan Ultisol. The soil was mixed with ground powders of cattle manure (CM), goat manure (GM),Gliricidia maculata(GL) and hydrophobicCasuarina equisetifolia(CE) leaves to obtain samples ranging from non-repellent to extremely water repellent, in two series. Series I was prepared by mixing GL and CE with soil (5, 10, 25, 50%). Series II consisted of 5% CM, GM, and GL, with (set A) and without (set B) intermixed 2% CE. Water repellency, water entry value, and water retention of samples were determined in the laboratory. Soil-water contact angle increased with increasing organic matter content in all the samples showing positive linear correlations. Although the samples amended with CE showed high soil-water contact angles in series I, set A (without 2% CE) and set B (with 2% CE) in series II did not show a noticeable difference, where >80% of the samples had soil-water contact angles <90°. Water entry value (R2= 0.83–0.92) and the water retention at 150 cm suction (R2= 0.69–0.8) of all the samples increased with increasing soil-water contact angles showing moderate to strong positive linear correlations. However, set A (without 2% CE) and set B (with 2% CE) in series II did not differ noticeably. Water entry value of about 60% the samples was <2.5 cm. Mixing of a small amount (2%) of hydrophobic organic matter with commonly used organic manures slightly increased the water repellency of sample soils, however not up to detrimental levels. It did not generate adverse effects on water entry and increased the water retention. It was clear that intermixing of small quantities of hydrophobic organic manure with organic manures commonly used in Sri Lankan agriculture, would not generate unfavorable impacts on soils.


2014 ◽  
Vol 4 ◽  
Author(s):  
Jorge Mataix-Solera ◽  
Lorena M. Zavala ◽  
Antonio Jordán ◽  
Gema Bárcenas-Moreno ◽  
Elena Lozano ◽  
...  

Fire induced soil water repellency (WR) is controlled by many different factors (temperature reached, amount and type of fuel, etc.). Soil properties may determine the occurrence and intensity of this property in burned soils. The objectives of this paper are to make advances in the study of soil properties as key factors controlling the behaviour of fire-induced WR, and to study the impact of pre-fire SOM content and SOM quality in fire-induced soil WR. In this research, experimental laboratory burnings were carried out using soil samples from different sites with different lithologies, soil types and plant species. Soil samples taken from the same site differ only in quantity and quality of soil organic matter, as they were collected from under different plant species. All soil samples were heated in a muffle furnace at 200, 250, 300 and 350 ºC without the addition of any fuel load. WR was measured using the water drop penetration time test (WDPT). The results showed significant differences between soil types and plant species, indicating that small differences in soil properties may act as key factors controlling the development and persistence of WR reached, with burned soil samples ranging from wettable to extremely water repellent. The main soil property controlling the response was texture, specifically sand content. The quality of organic matter was also observed to have an effect, since soil samples from the same site with similar organic matter contents, but taken from beneath different plant species, showed different WR values after burning.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 251 ◽  
Author(s):  
I. McKissock ◽  
R. J. Gilkes ◽  
W. van Bronswijk

In general, water repellency by soil increases with the increase of total organic matter and decreases as the clay and silt contents of the soil increase. The prediction of water repellency from soil organic carbon (OC) content may be improved by examining the types of carbon associated with water repellency. This paper examines the hypothesis that measurement of aliphatic C can provide a better prediction of water repellency than measurement of total OC and also looks at the effects of soil texture on water repellency and the amount of aliphatic C in the soil. DRIFT (diffuse reflectance infrared fourier transform) spectra were measured on sandy soils from the West Midland Sandplains north of Perth in Western Australia. The areas of the aliphatic CH stretching signal (3000–2800/cm) and the OH stretching signal due to kaolin (3750–3570/cm) were used as relative measures of aliphatic carbon and kaolin contents. The relationships of aliphatic C and kaolin to water repellency have been examined and compared with the relationships of water repellency to total OC and clay contents of soil.Hydrophobic organic C as measured by DRIFT gave a better prediction of soil water repellency (r2 = 0.45) than did the total OC (r2 = 0.36). The specific hydrophobicity of organic matter (aliphatic C/OC ratio) increased as sand content increased. However, the direct influence of soil texture on water repellency was of more significance than its indirect influence on the amounts and forms of soil organic matter. A multivariate model including aliphatic C and clay + silt content was the best model for describing water repellency (r2 = 0.58). DRIFT is an effective, rapid method for screening soils for water repellent properties.For individual sand grains there was a weak positive relationship (r2 = 0.26) between the size of the aliphatic CH peak measured from surfaces of sand grains and the water repellency of the grains. A discontinuous aliphatic surface layer was present on the surface of individual sand grains.


2017 ◽  
Vol 65 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Nasrollah Sepehrnia ◽  
Mohammad Ali Hajabbasi ◽  
Majid Afyuni ◽  
Ľubomír Lichner

AbstractThis study explored the effect of soil water repellency (SWR) on soil hydrophysical properties with depth. Soils were sampled from two distinctly wettable and water repellent soil profiles at depth increments from 0-60 cm. The soils were selected because they appeared to either wet readily (wettable) or remain dry (water repellent) under field conditions. Basic soil properties (MWD, SOM, θv) were compared to hydrophysical properties (Ks, Sw, Se, Sww, Swh, WDPT, RIc, RImand WRCT) that characterise or are affected by water repellency. Our results showed both soil and depth affected basic and hydrophysical properties of the soils (p <0.001). Soil organic matter (SOM) was the major property responsible for water repellency at the selected depths (0-60). Water repellency changes affected moisture distribution and resulted in the upper layer (0-40 cm) of the repellent soil to be considerably drier compared to the wettable soil. The water repellent soil also had greater MWDdryand Ks over the entire 0-60 cm depth compared to the wettable soil. Various measures of sorptivity, Sw, Se, Sww, Swh, were greater through the wettable than water repellent soil profile, which was also reflected in field and dry WDPT measurements. However, the wettable soil had subcritical water repellency, so the range of data was used to compare indices of water repellency. WRCT and RImhad less variation compared to WDPT and RIc. Estimating water repellency using WRCT and RIm indicated that these indices can detect the degree of SWR and are able to better classify SWR degree of the subcritical-repellent soil from the wettable soil.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2012 ◽  
Vol 549 ◽  
pp. 733-736
Author(s):  
Xiao Mian Chen ◽  
Jing Jing Shi ◽  
Hong Sha Su ◽  
Chun Ting Lin ◽  
En Long Yang

The catalytic properties of nano-TiO2 modified fabric suits the demand for self-cleaning in recent years. In this paper, advanced and innovative technology were used to synthesize water sol of titanium dioxide photocatalyst with high catalytic activity for fabric finishing. The wear behavior, antibacterial property and water repellency of treated and untreated fabric were tested. Results indicate that finishing and washing of the titanium dioxide had no effect on wear behavior; finished and washed fabric has a certain antibacterial and water repellent properties.


Sign in / Sign up

Export Citation Format

Share Document